Acta Chimica Sinica ›› 2013, Vol. 71 ›› Issue (06): 913-919.DOI: 10.6023/A13010104 Previous Articles     Next Articles

Article

梳状-线性共聚物自组装的耗散粒子动力学模拟

王立权, 林嘉平, 张乾   

  1. 华东理工大学 上海市先进聚合物材料重点实验室 材料科学与工程学院 上海 200237
  • 投稿日期:2013-01-20 发布日期:2013-04-23
  • 通讯作者: 林嘉平,jlin@ecust.edu.cn; Tel.: 021-64253370 E-mail:jlin@ecust.edu.cn
  • 基金资助:

    项目受国家自然科学基金(Nos. 50925308, 21234002)资助. 本文由张希院士约稿.

Dissipative Particle Dynamics Simulation on Self-Assembly of Comb-Coil Copolymers

Wang Liquan, Lin Jiaping, Zhang Qian   

  1. Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237
  • Received:2013-01-20 Published:2013-04-23
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Nos. 50925308, 21234002).

Using dissipative dynamics simulation, we studied self-assembly behavior of (A-g-B)-b-A comb-coil copolymers in selective solvents. The comb-coil copolymers, having two competitive length scales, are able to self-assemble into aggregates of different types, i.e., type I and type II. For the aggregates of type I, the phase separation occurs between the solvophobic and solvophilic blocks, which behave as asymmetric graft copolymers. While in the aggregates of type II, the phase separation takes place between coil and comb blocks, acting as diblock copolymers. The self-assembly of the comb-coil block copolymers in solvents selective to either graft arms or backbone was investigated. The effects of the number and length of graft arms on the self-assembly behavior were examined. In the solvents selective to graft arms, the comb-coil copolymers tend to assemble into spherical micelles of type II, where the comb and coil blocks form the shell and core, respectively. This is due to the fact that the crowd of the comb blocks in the shell can be alleviated by forming high-curvature structures. In addition, such a crowd can also be alleviated by decreasing the length of graft arms and therefore, vesicles were observed when the graft arms are short. In addition, the decrease in the interaction strength between backbone and graft arms (and solvents) favors the formation of the aggregates of type II. In the solvents selective to backbones, the comb-coil copolymers incline to form low-curvature aggregates of type II, such as disklike micelles and vesicles. By forming low-curvature structures, the rod-like comb blocks can be tightly packed in the cores of the aggregates. When the comb-coil copolymers form the aggregates of type I in both solvents, the morphologies are very sensitive to the length of the graft arms. For example, in solvents selective to graft arms, as the length of graft arms increases, a morphological transformation of large-compound micelle → vesicle → cylindrical micelle → spherical micelle was observed. The simulation results were compared with the available experimental findings reported in the literatures, and an agreement was observed. In addition, the simulations predict some behaviors that have not been observed yet. The present work is helpful for further understanding the competitive self-assembly behavior of the comb-coil copolymers.

Key words: comb-coil copolymer, self-assembly, dissipative particle dynamics simulation, micelle, phase separation