[1] (a) Kerr, R. A.; Service, R. F. Science 2005, 309, 101.
(b) Ra-gauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, G.; Cairney, J.; Eckert, C. A.; Fredrick, W. J. J.; Hallett, J. P.; Leak, D. J.; Liotta, C. L.; Mielenz, J. R.; Murphy, R.; Templer, R.; Tschaplinski, T. Science 2006, 311, 484.
[2] (a) Douvris, C.; Ozerov, O. V. Science 2008, 321, 1188.
(b) Dioumaev, V. K.; Bullock, R. M. Nature 2003, 424, 530.
(c) Fernandez-Alvarez, F. J.; Aitani A. M.; Oro, L. A. Catal. Sci. Technol. 2014, 4, 611.
(d) Sui, Y.-Z.; Zhang, X.-C.; Wu, J.-W.; Li, S.; Zhou, J.-N.; Li, M.; Fang, W.; Chan A. S. C.; Wu, J. Chem.-Eur. J. 2012, 18, 7486.
(e) Addis, D.; Das, S.; Junge K.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 6004.
(f) Malacea, R.; Poli, R.; Manoury, E. Coord. Chem. Rev. 2010, 254, 729.
(g) Pan, Z.; Liu, M.; Zheng, C.; Gao, D.; Huang, W. Chin. J. Chem. 2017, 35, 1227.
(h) Hu, X.; Hu, F.; Zhang, M.; Liao, Y.; Xu, X.; Yuan, W.; Zhang, X. Chin. J. Org. Chem. 2016, 36, 1895. (扈晓艳, 胡方芝, 张敏敏, 廖益均, 徐小英, 袁伟成, 张晓梅, 有机化学, 2016, 36, 1895.)
(i) Zaranek, M.; Marciniec, B.; Pawluc, P. Org. Chem. Front. 2016, 3, 1337.
(j) Hu, X.; Tian, C.; Maxim, B.; Nie, W. Acta Chim. Sinica 2015, 73, 1025. (胡茜, 田冲, Borzov Maxim, 聂万丽, 化学学报, 2015, 73, 1025.)
[3] (a) Yang, J.; Brookhart, M. Adv. Synth. Catal. 2009, 351, 175.
(b) Caputo, C. B.; Stephan, D. W. Organometallics 2012, 31, 27.
(c) Scott, V. J.; Celenligil-Cetin, R.; Ozerov, O. V. J. Am. Chem. Soc. 2005, 127, 2852.
[4] (a) Gevorgyan, V.; Liu, J.-X.; Rubin, M.; Benson S.; Yamamoto, Y. Tetrahedron Lett. 1999, 40, 8919.
(b) Gevorgyan, V.; Rubin, M.; Benson, S.; Liu, J.-X.; Yamamoto, Y. J. Org. Chem. 2000, 65, 6179.
(c) Blackwell, J. M.; Morrison, D. J.; Piers, W. E. Tetrahedron 2002, 58, 8247.
(d) Nimmagadda, R. D.; McRae, C. Tetrahedron Lett. 2006, 47, 5755.
(e) Mack, D. J.; Guo, B.; Njardarson, J. T. Chem. Commun. 2012, 48, 7844.
(f) Chojnowski, J.; Rubinsztajn, S.; Cella, J. A.; Fortuniak, W.; Cypryk, M.; Kurjata, J.; Kazmierski, K. Organometallics 2005, 24, 6077.
[5] (a) Park, S.; Brookhart, M. Organometallics 2010, 29, 6057.
(b) Parks, D. J.; Piers, W. E. J. Am. Chem. Soc. 1996, 118, 9440.
(c) Skjel, M. K.; Houghton, A. Y.; Kirby, A. E.; Harrison, D. J.; McDonald, R.; Rosenberg, L. Org. Lett. 2010, 12, 376.
(d) Chandrasekhar, S.; Reddy, C. R.; Babu, B. N. J. Org. Chem. 2002, 67, 9080.
[6] (a) Bézier, D.; Park, S.; Brookhart, M. Org. Lett. 2013, 15, 496.
(b) Gevorgyan, V.; Rubin, M.; Liu, J.-X.; Yamamoto, Y. J. Org. Chem. 2001, 66, 1672.
(c) Cheng, C.; Brookhart, M. Angew. Chem., Int. Ed. 2012, 51, 9422.
[7] (a) Park, S.; Bézier, D.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11404.
(b) Berkefeld, A.; Piers, W. E.; Parvez, M. J. Am. Chem. Soc. 2010, 132, 10660.
[8] (a) Blackwell, J. M.; Sonmor, E. R.; Scoccitti, T.; Piers, W. E. Org. Lett. 2000, 2, 3921.
(b) Rubin, M.; Schwier, T.; Gevorgyan, V. J. Org. Chem. 2002, 67, 1936.
(c) Ding, S.; Song, L.-J.; Chung, L. W.; Zhang, X.; Sun, J.; Wu, Y.-D. J. Am. Chem. Soc. 2013, 135, 13835.
[9] (a) McLaughlin, M. P.; Adduci, L. L.; Becker, J. J.; Gagné, M. R. J. Am. Chem. Soc. 2013, 135, 1225.
(b) Robert, T.; Oestreich, M. Angew. Chem., Int. Ed. 2013, 52, 5216.
(c) Adduci, L. L.; McLaughlin, M. P.; Bender, T. A.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2014, 53, 1646.
[10] (a) Yang, J.; White, P. S.; Brookhart, M. J. Am. Chem. Soc. 2008, 130, 17509.
(b) Yang, J.; Brookhart, M. J. Am. Chem. Soc. 2007, 129, 12656.
(c) Park, S.; Brookhart, M. Chem. Commun. 2011, 47, 3643.
[11] Metsänen, T. T.; Hrobarik, P.; Klare, H. F. T.; Kaupp, M.; Oestreich, M. J. Am. Chem. Soc. 2014, 136, 6912.
[12] Herein we examine the first cleavage of EtOEt. The cleavage of the silyl ether could also be achieved (the second cleavage) if lengthen the reaction time.
[13] Yang, J.; White, P. S.; Schauer, C. K.; Brookhart, M. Angew. Chem., Int. Ed. 2008, 47, 4141.
[14] Perutz, R. N.; Sabo-Etienne, S. Angew. Chem., Int. Ed. 2007, 46, 2578.
[15] (a) Lin, Z. Chem. Soc. Rev. 2002, 31, 239.
(b) Chung, L. W.; Lee, H. G.; Lin, Z.; Wu, Y.-D. J. Org. Chem. 2006, 71, 6000.
(c) Lee, T. Y.; Dang, L.; Zhou, Z.; Yeung, C. H.; Lin, Z.; Lau, C. P. Eur. J. Inorg. Chem. 2010, 5675.
[16] Rendler, S.; Oestreich, M. Angew. Chem., Int. Ed. 2008, 47, 5997.
[17] (a) Wang, W.; Gu, P.; Wang, Y.; Wei, H. Organometallics 2014, 33, 847.
(b) Sakata, K.; Fujimoto, H. J. Org. Chem. 2013, 78, 12505.
[18] Cheng, Y.-H.; Zhao, X.; Song, K.-S.; Liu, L.; Guo, Q.-X. J. Org. Chem. 2002, 67, 6638.
[19] Anderson, K. M.; Orpen, A. G. Chem. Commun. 2001, 24, 2682.
[20] The DFT method leads to an overestimation of entropy, resulting in an overestimation of the free energy. This phenomenon has also appeared in previous theoretical calculations. For example:(a) Ding, L.; Ishida, N.; Murakami, M.; Morokuma, K. J. Am. Chem. Soc. 2014, 136, 169.
(b) Sugiyama, A.; Ohnishi, Y.-Y.; Nakaoka, M.; Nakao, Y.; Sato, H.; Sakaki, S.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 12975.
(c) Yu, Z.-X.; Houk, K. N. J. Am. Chem. Soc. 2003, 125, 13825.
(d) Hermans, J.; Wang, L. J. Am. Chem. Soc. 1997, 119, 2707.
(e) Tanaka, R.; Yamashita, M.; Chung, L. W.; Morokuma, K.; Nozaki, K. Organometallics 2011, 30, 6742.
(f) Dub, P. A.; Ikariya, T. J. Am. Chem. Soc. 2013, 135, 2604.
(g) Strajbl, M.; Sham, Y. Y.; Villà, J.; Chu, Z.-T.; Warshel, A. J. Phys. Chem. B 2000, 104, 4578.
(h) Hermans, J.; Wang, L. J. Am. Chem. Soc. 1997, 119, 2707.
[21] Gorelsky, S. I.; Lapointe, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 10848.
[22] Zhang, Q.; Yu, H.-Z.; Shi, J. Acta Phys.-Chim. Sin. 2013, 29, 2321. (张琪, 于海珠, 石景, 物理化学学报, 2013, 29, 2321.)
[23] Zhang, Q.; Yu, H.-Z.; Fu, Y. Organometallics 2016, 35, 2473.
[24] Hydride is dissociated in the calculation of Ir-H(2) bond dissociation energy. See reference herein:Qi, X.-J.; Liu, L.; Fu, Y.; Guo, Q.-X. Organometallics 2006, 25, 5879.
[25] Gaussian 09, revision D.01; Gaussian, Inc., Wallingford, CT, 2013.
[26] Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
[27] (a) Kundu, S.; Choi, J.; Wang, D. Y.; Choliy, Y.; Emge, T. J.; Krogh-Jespersen, K.; Goldman, A. S. J. Am. Chem. Soc. 2013, 135, 5127.
(b) Haibach, M. C.; Guan, C.; Wang, D. Y.; Li, B.; Lease, N.; Steffens, A. M.; Krogh-Jespersen, K.; Goldman, A. S. J. Am. Chem. Soc. 2013, 135, 15062.
(c) Tian, Y.; Fu, Y.; Zhang, Q.; Yu, H.-Z.; Shi, J. Acta Chim. Sinica 2014, 72, 935. (田燕, 傅尧, 张琪, 于海珠, 石景, 化学学报, 2014, 72, 935.)
(d) Liu, D.-J.; Yu, H.-Z.; Fu, Y. Acta Chim. Sinica 2013, 71, 1385. (刘丁嘉, 于海珠, 傅尧, 化学学报, 2013, 71, 1385.)
[28] Zhang, Q.; Yu, H.-Z.; Fu, Y. Org. Chem. Front. 2014, 1, 614.
[29] Fukui, K. J. Phys. Chem. 1970, 74, 4161.
[30] Fukui, K. Acc. Chem. Res. 1981, 14, 363.
[31] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
[32] Ehlers, A. W.; Bohme, M.; Dapprich, S.; Gobbi, A.; Hollwarth, A.; Jonas, V.; Kohler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111.
[33] Hollwarth, A.; Bohme, M.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; Kohler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 237. |