Acta Chimica Sinica ›› 2021, Vol. 79 ›› Issue (6): 716-728.DOI: 10.6023/A21020074 Previous Articles Next Articles
Review
邵阳a,*(), 杨国胜b, 张继龙c, 罗敏a, 马玲玲a, 徐殿斗a
投稿日期:
2021-02-26
发布日期:
2021-04-25
通讯作者:
邵阳
作者简介:
邵阳, 助理研究员. 2019年毕业于中国科学院高能物理研究所, 获博士学位. 2018年以博士生身份在日本弘前大学辐射医疗综合研究所山田正俊课题组访问和学习一年. 主要研究方向为关键放射性核素分析方法开发与示踪应用研究. |
杨国胜, 日本量子科学技术研究开发机构, 主任研究员. 主要从事环境和人体中痕量人工放射性核素的分析方法开发、示踪及剂量评估等研究(137Cs、Te、226Ra、236U、237Np、239Pu、240Pu、129I等). |
基金资助:
Yang Shaoa(), Guosheng Yangb, Jilong Zhangc, Min Luoa, Lingling Maa, Diandou Xua
Received:
2021-02-26
Published:
2021-04-25
Contact:
Yang Shao
Supported by:
Share
Yang Shao, Guosheng Yang, Jilong Zhang, Min Luo, Lingling Ma, Diandou Xu. Progress and Application on the Analysis of Anthropogenic Radionuclide 236U[J]. Acta Chimica Sinica, 2021, 79(6): 716-728.
样品类型 | 检测核素 | 树脂色谱柱 | 铀回收率 | 参考文献 |
---|---|---|---|---|
珊瑚 | 236U、239,240Pu | AG 1-X8、UTEVA | — | [ |
海水 | 236U、239,240Pu | TEVA、UTEVA | 约60% | [ |
海水 | 236U、237Np、239,240Pu | TEVA、UTEVA | 82%~100% | [ |
水样 | 238,239,240Pu、237Np、228,232Th、234,235,236,238U、241Am、242,243,244Cm、147Pm、90Y、89,90Sr、55Fe | AG MP-1M、UTEVA、DGA、Sr、TRU | 100% | [ |
水样 | 238U、232Th、226Ra、210Po、210Pb | TRU、Sr、HRa | 93%±7% | [ |
环境擦拭样品 | 234,235,236,238U、239,240,241,242Pu | TEVA、UTEVA | >99% | [ |
土壤 | 234,235,238U、228,230,232Th | Microthene-TOPO | 79.8%±13.0% | [ |
土壤 | 235,238U、239,240,241Pu | UTEVA、DOWEXTM 1×8 | — | [ |
河水 | 234,235,236,238U、230,232Th、239,240Pu、237Np、241Am、90Sr | TEVA、DGA | 93%±6.2% | [ |
海水 | 99Tc、237Np、239,240Pu、238U | TEVA、AG MP-1M、UTEVA | 65% | [ |
海水 | 236U、237Np、239,240Pu | TEVA、UTEVA | 72.7%~112.1% | [ |
样品类型 | 检测核素 | 树脂色谱柱 | 铀回收率 | 参考文献 |
---|---|---|---|---|
珊瑚 | 236U、239,240Pu | AG 1-X8、UTEVA | — | [ |
海水 | 236U、239,240Pu | TEVA、UTEVA | 约60% | [ |
海水 | 236U、237Np、239,240Pu | TEVA、UTEVA | 82%~100% | [ |
水样 | 238,239,240Pu、237Np、228,232Th、234,235,236,238U、241Am、242,243,244Cm、147Pm、90Y、89,90Sr、55Fe | AG MP-1M、UTEVA、DGA、Sr、TRU | 100% | [ |
水样 | 238U、232Th、226Ra、210Po、210Pb | TRU、Sr、HRa | 93%±7% | [ |
环境擦拭样品 | 234,235,236,238U、239,240,241,242Pu | TEVA、UTEVA | >99% | [ |
土壤 | 234,235,238U、228,230,232Th | Microthene-TOPO | 79.8%±13.0% | [ |
土壤 | 235,238U、239,240,241Pu | UTEVA、DOWEXTM 1×8 | — | [ |
河水 | 234,235,236,238U、230,232Th、239,240Pu、237Np、241Am、90Sr | TEVA、DGA | 93%±6.2% | [ |
海水 | 99Tc、237Np、239,240Pu、238U | TEVA、AG MP-1M、UTEVA | 65% | [ |
海水 | 236U、237Np、239,240Pu | TEVA、UTEVA | 72.7%~112.1% | [ |
采样海域 | 采样时间 | 236U/238U同位素比值 | 236U/238U同位素比值平均值 | 参考文献 |
---|---|---|---|---|
North Atlantic | 2014 | 40×10-12~2350×10-12 | (1075±345)×10-12 | [ |
Eastern Pacific Zonal Transect | 2013 | 0.2×10-12~727×10-12 | (179±247)×10-12 | [ |
Greenland coastal line | 2012~2016 | 1.1×10-9~15.5×10-9 | 3.097×10-9 | [ |
coast off Japan | 2013~2015 | 930×10-12~1300×10-12 | (1084±163)×10-12 | [ |
North Sea | 2010 | 1.24×10-9~19.49×10-9 | (7.612±3.750)×10-9 | [ |
Danish Seawater | 2014 | 5.4×10-9~24.0×10-9 | 13.40×10-9 | [ |
western equatorial Atlantic Ocean | 2010 | 91×10-12~3567×10-12 | (808±1369)×10-12 | [ |
North Pacific Ocean | 2012 | 0.09×10-10~14.1×10-10 | (3.441±4.14)×10-10 | [ |
Arctic Ocean: Barents Sea shelf | 2015 | 1380×10-12~3680×10-12 | 1550×10-12 | [ |
Arctic Ocean: West Spitsbergen | 2015 | 1340×10-12~1960×10-12 | 1560×10-12 | [ |
Arctic Ocean: Eurasian Basin | 2015 | 110×10-12~2980×10-12 | 1700×10-12 | [ |
Arctic Ocean: Makarov Basin | 2015 | 2.8×10-12~2810×10-12 | 1670×10-12 | [ |
Fram Strait | 2016 | 367×10-12~2902×10-12 | (1845±654)×10-12 | [ |
Mediterranean Sea | 2013 | 710×10-12~2220×10-12 | (1518±369)×10-12 | [ |
northwest Mediterranean Sea | — | 1.4×10-9~2.13×10-9 | (1.78±0.33)×10-9 | [ |
northern Benguela Upwelling | 2014 | 0.22×10-10~6.70×10-10 | (5.091±1.596)×10-10 | [ |
Irish Sea | 1993 | — | (2.0±0.4)×10-6 | [ |
采样海域 | 采样时间 | 236U/238U同位素比值 | 236U/238U同位素比值平均值 | 参考文献 |
---|---|---|---|---|
North Atlantic | 2014 | 40×10-12~2350×10-12 | (1075±345)×10-12 | [ |
Eastern Pacific Zonal Transect | 2013 | 0.2×10-12~727×10-12 | (179±247)×10-12 | [ |
Greenland coastal line | 2012~2016 | 1.1×10-9~15.5×10-9 | 3.097×10-9 | [ |
coast off Japan | 2013~2015 | 930×10-12~1300×10-12 | (1084±163)×10-12 | [ |
North Sea | 2010 | 1.24×10-9~19.49×10-9 | (7.612±3.750)×10-9 | [ |
Danish Seawater | 2014 | 5.4×10-9~24.0×10-9 | 13.40×10-9 | [ |
western equatorial Atlantic Ocean | 2010 | 91×10-12~3567×10-12 | (808±1369)×10-12 | [ |
North Pacific Ocean | 2012 | 0.09×10-10~14.1×10-10 | (3.441±4.14)×10-10 | [ |
Arctic Ocean: Barents Sea shelf | 2015 | 1380×10-12~3680×10-12 | 1550×10-12 | [ |
Arctic Ocean: West Spitsbergen | 2015 | 1340×10-12~1960×10-12 | 1560×10-12 | [ |
Arctic Ocean: Eurasian Basin | 2015 | 110×10-12~2980×10-12 | 1700×10-12 | [ |
Arctic Ocean: Makarov Basin | 2015 | 2.8×10-12~2810×10-12 | 1670×10-12 | [ |
Fram Strait | 2016 | 367×10-12~2902×10-12 | (1845±654)×10-12 | [ |
Mediterranean Sea | 2013 | 710×10-12~2220×10-12 | (1518±369)×10-12 | [ |
northwest Mediterranean Sea | — | 1.4×10-9~2.13×10-9 | (1.78±0.33)×10-9 | [ |
northern Benguela Upwelling | 2014 | 0.22×10-10~6.70×10-10 | (5.091±1.596)×10-10 | [ |
Irish Sea | 1993 | — | (2.0±0.4)×10-6 | [ |
[1] |
Brockman, J. D.; Brown, J. W.; Morrell, J. S.; Robertson, J. D. Anal. Chem. 2016, 88, 8765.
doi: 10.1021/acs.analchem.6b02144 |
[2] |
Purser, K. H.; Kilius, L. R.; Litherland, A. E.; Zhao, X. Nucl. Instrum. Meth. B 1996, 113, 445.
doi: 10.1016/0168-583X(95)01369-5 |
[3] |
Christl, M.; Casacuberta, N.; Lachner, J.; Herrmann, J.; Synal, H. A. Environ. Sci. Technol. 2017, 51, 12146.
doi: 10.1021/acs.est.7b03168 |
[4] |
Bu, W.; Zheng, J.; Ketterer, M. E.; Hu, S.; Uchida, S.; Wang, X. Anal. Chim. Acta 2017, 995, 1.
doi: 10.1016/j.aca.2017.09.029 |
[5] |
Sakaguchi, A.; Kawai, K.; Steier, P.; Quinto, F.; Mino, K.; Tomita, J.; Hoshi, M.; Whitehead, N.; Yamamoto, M. Sci. Total Environ. 2009, 407, 4238.
doi: 10.1016/j.scitotenv.2009.01.058 |
[6] |
Quinto, F.; Hrnecek, E.; Krachler, M.; Shotyk, W.; Steier, P.; Winkler, S. R. Environ. Sci. Technol. 2013, 47, 5243.
doi: 10.1021/es400026m |
[7] |
Shao, Y.; Yang, G.; Luo, M.; Xu, D.; Tazoe, H.; Yamada, M.; Ma, L. Chemosphere 2020, 263, 127909.
doi: S0045-6535(20)32104-4 pmid: 32822937 |
[8] |
Steier, P.; Bichler, M.; Keith Fifield, L.; Golser, R.; Kutschera, W.; Priller, A.; Quinto, F.; Richter, S.; Srncik, M.; Terrasi, P.; Wacker, L.; Wallner, A.; Wallner, G.; Wilcken, K. M.; Maria Wild, E. Nucl. Instrum. Meth. B 2008, 266, 2246.
doi: 10.1016/j.nimb.2008.03.002 |
[9] |
Shao, Y.; Yang, G.; Xu, D.; Yamada, M.; Tazoe, H.; Luo, M.; Cheng, H.; Yang, K.; Ma, L. J. Environ. Radioact. 2019, 197, 1.
doi: S0265-931X(18)30596-4 pmid: 30463028 |
[10] |
Boulyga, S. F.; Becker, J. S. J. Anal. At. Spectrom. 2002, 17, 1143.
doi: 10.1039/B202196J |
[11] |
Sakaguchi, A.; Steier, P.; Takahashi, Y.; Yamamoto, M. Environ. Sci. Technol. 2014, 48, 3691.
doi: 10.1021/es405294s |
[12] |
Castrillejo, M.; Witbaard, R.; Casacuberta, N.; Richardson, C. A.; Dekker, R.; Synal, H. A.; Christl, M. Sci. Total Environ. 2020, 717, 137094.
doi: 10.1016/j.scitotenv.2020.137094 |
[13] |
Lee, S. H.; Povinec, P. P.; Wyse, E.; Hotchkis, M. A. C. Appl. Radiat. Isot. 2008, 66, 823.
doi: 10.1016/j.apradiso.2008.02.020 |
[14] |
Christl, M.; Lachner, J.; Vockenhuber, C.; Lechtenfeld, O.; Stimac, I.; van der Loeff, M. R.; Synal, H. A. Geochim. Cosmochim. Acta 2012, 77, 98.
doi: 10.1016/j.gca.2011.11.009 |
[15] |
Martelat, B.; Isnard, H.; Vio, L.; Dupuis, E.; Cornet, T.; Nonell, A.; Chartier, F. Anal. Chem. 2018, 90, 8622.
doi: 10.1021/acs.analchem.8b01884 |
[16] |
Diez-Fernandez, S.; Jaegler, H.; Bresson, C.; Chartier, F.; Evrard, O.; Hubert, A.; Nonell, A.; Pointurier, F.; Isnard, H. Talanta 2020, 206, 120221.
doi: 10.1016/j.talanta.2019.120221 |
[17] |
Lopez-Lora, M.; Chamizo, E.; Villa-Alfageme, M.; Hurtado- Bermudez, S.; Casacuberta, N.; Garcia-Leon, M. Talanta 2018, 178, 202.
doi: 10.1016/j.talanta.2017.09.026 |
[18] |
Wang, H.; Ni, Y.; Zheng, J.; Huang, Z.; Xiao, D.; Aono, T. Anal. Chim. Acta 2019, 1050, 71.
doi: 10.1016/j.aca.2018.10.065 |
[19] |
Kolacinska, K.; DeVol, T. A.; Seliman, A. F.; Bliznyuk, V. N.; Dudek, J.; Dudek, M. K.; Piotrowski, P.; Trojanowicz, M. Talanta 2019, 205, 120099.
doi: 10.1016/j.talanta.2019.06.099 |
[20] |
Huang, Z.; Ni, Y.; Wang, H.; Zheng, J.; Yamazaki, S.; Sakaguchi, A.; Long, X.; Uchida, S. Microchem. J. 2019, 148, 597.
doi: 10.1016/j.microc.2019.05.044 |
[21] |
Lopez-Lora, M.; Levy, I.; Chamizo, E. Talanta 2019, 200, 22.
doi: 10.1016/j.talanta.2019.03.036 |
[22] |
Wang, Z.; Zheng, J.; Cao, L.; Tagami, K.; Uchida, S. Anal. Chem. 2016, 88, 7387.
doi: 10.1021/acs.analchem.6b01934 |
[23] |
Willberger, C.; Amayri, S.; Haussler, V.; Scholze, R.; Reich, T. Anal. Chem. 2019, 91, 11537.
doi: 10.1021/acs.analchem.9b00997 |
[24] |
Du, J.; Wang, L.; Xiong, P. Nuclear Electronics and Detection Technology 2017, 37, 335. (in Chinese)
|
(杜杰, 王丽萍, 熊鹏辉, 核电子学与探测技术, 2017, 37, 335.)
|
|
[25] |
Yang, G.; Tazoe, H.; Yamada, M. Anal. Chim. Acta 2016, 944, 44.
doi: 10.1016/j.aca.2016.09.033 |
[26] |
Wang, W.; Xu, J.; Zhai, L.; Shen, X.; Yuan, X.; Wei, G.; Fang, S.; Deng, H.; Li, Z. Journal of Chinese Mass Spectrometry Society 2019, 40, 518. (in Chinese)
|
(汪伟, 徐江, 翟利华, 沈小攀, 袁祥龙, 韦冠一, 方随, 邓虎, 李志明, 质谱学报, 2019, 40, 518.)
|
|
[27] |
Park, J. H.; Choi, E. J. Talanta 2016, 160, 600.
doi: 10.1016/j.talanta.2016.08.006 |
[28] |
Zhang, J.; Li, C.; Wang, L.; Wu, Z.; Cole, H.; Zhou, Z.; Yang, L.; Li, D.; Tan, X. Uranium Geology 2019, 35, 38. (in Chinese)
|
(张继龙, 黎春, 王岚, 武朝辉, Cole, H, 周至波, 杨丽芳, 李多宏, 谭西早, 铀矿地质, 2019, 35, 38.)
|
|
[29] |
Bellucci, J. J.; Whitehouse, M. J.; Aleshin, M.; Eriksson, M. Anal. Chem. 2019, 91, 5599.
doi: 10.1021/acs.analchem.8b04809 |
[30] |
Prášek, T.; Němec, M.; Steier, P.; Kern, M.; Honda, M.; Hain, K.; Zhang, X. Nucl. Instrum. Meth. B 2020, 472, 64.
doi: 10.1016/j.nimb.2020.03.029 |
[31] |
Claverie, F.; Hubert, A.; Berail, S.; Donard, A.; Pointurier, F.; Pécheyran, C. Anal. Chem. 2016, 88, 4375.
doi: 10.1021/acs.analchem.5b04802 |
[32] |
Boulyga, S.; Konegger-Kappel, S.; Richter, S.; Sangély, L. J. Anal. At. Spectrom. 2015, 30, 1469.
doi: 10.1039/C4JA00491D |
[33] |
Fahey, A. J.; Groopman, E. E.; Grabowski, K. S.; Fazel, K. C. Anal. Chem. 2016, 88, 7145.
doi: 10.1021/acs.analchem.6b01209 |
[34] |
Jaegler, H.; Pointurier, F.; Diez-Fernandez, S.; Gourgiotis, A.; Isnard, H.; Hayashi, S.; Tsuji, H.; Onda, Y.; Hubert, A.; Laceby, J. P.; Evrard, O. Chemosphere 2019, 225, 849.
doi: S0045-6535(19)30500-4 pmid: 30904765 |
[35] |
Boulyga, S. F.; Heumann, K. G. J. Environ. Radioact. 2006, 88, 1.
doi: 10.1016/j.jenvrad.2005.12.007 |
[36] |
Boulyga, S. F.; Matusevich, J. L.; Mironov, V. P.; Kudrjashov, V. P.; Halicz, L.; Segal, I.; McLean, J. A.; Montaser, A.; Sabine Becker, J. J. Anal. At. Spectrom. 2002, 17, 958.
doi: 10.1039/b201803a |
[37] |
Marsden, O. J.; Livens, F. R.; Day, J. P.; Fifield, L. K.; Goodall, P. S. Analyst 2001, 126, 633.
pmid: 11394304 |
[38] |
Maxwell, S. L.; Culligan, B. K.; Kelsey-Wall, A.; Shaw, P. J. Anal. Chim. Acta 2011, 701, 112.
doi: 10.1016/j.aca.2011.06.011 |
[39] |
Maxwell, S. L.; Culligan, B. K.; Noyes, G. W. Radiochim. Acta 2010, 98, 793.
doi: 10.1524/ract.2010.1785 |
[40] |
Zhang, W.; Hu, Z. Spectrochim. Acta B 2019, 160, 105690.
doi: 10.1016/j.sab.2019.105690 |
[41] |
Qiao, J.; Hou, X.; Steier, P.; Golser, R. Anal. Chem. 2013, 85, 11026.
doi: 10.1021/ac402673p |
[42] |
Qiao, J.; Hou, X.; Steier, P.; Nielsen, S.; Golser, R. Anal. Chem. 2015, 87, 7411.
doi: 10.1021/acs.analchem.5b01608 |
[43] |
Michel, H.; Levent, D.; Barci, V.; Barci-Funel, G.; Hurel, C. Talanta 2008, 74, 1527.
doi: 10.1016/j.talanta.2007.09.030 pmid: 18371813 |
[44] |
Rovan, L.; Štrok, M. J. J. Anal. At. Spectrom. 2019, 34, 1882.
doi: 10.1039/C9JA00144A |
[45] |
Froehlich, M. B.; Chan, W. Y.; Tims, S. G.; Fallon, S. J.; Fifield, L. K. J. Environ. Radioact. 2016, 165, 197.
doi: S0265-931X(16)30429-5 pmid: 27764678 |
[46] |
Dai, X.; Kramer-Tremblay, S. Anal. Chem. 2014, 86, 5441.
doi: 10.1021/ac500572g |
[47] |
Dalencourt, C.; Chabane, M. N.; Tremblay-Cantin, J. C.; Lariviere, D. Talanta 2020, 207, 120282.
doi: S0039-9140(19)30915-4 pmid: 31594595 |
[48] |
Metzger, S. C.; Ticknor, B. W.; Rogers, K. T.; Bostick, D. A.; McBay, E. H.; Hexel, C. R. Anal. Chem. 2018, 90, 9441.
doi: 10.1021/acs.analchem.8b02095 |
[49] |
Jia, G. J. Radioan. Nucl. Chem. 2016, 311, 1007.
doi: 10.1007/s10967-016-4905-3 |
[50] |
Shibahara, Y.; Kubota, T.; Fujii, T.; Fukutani, S.; Takamiya, K.; Konno, M.; Mizuno, S.; Yamana, H. J. Radioan. Nucl. Chem. 2015, 307, 2281.
doi: 10.1007/s10967-015-4551-1 |
[51] |
Habibi, A.; Boulet, B.; Gleizes, M.; Lariviere, D.; Cote, G. Anal. Chim. Acta 2015, 883, 109.
doi: 10.1016/j.aca.2015.04.025 |
[52] |
Qiao, J.; Shi, K.; Hou, X.; Nielsen, S.; Roos, P. Environ. Sci. Technol. 2014, 48, 3935.
doi: 10.1021/es404584b |
[53] |
Chamizo, E.; López-Lora, M.; Villa, M.; Casacuberta, N.; López-Gutiérrez, J. M.; Pham, M. K. Nucl. Instrum. Meth. B 2015, 361, 535.
doi: 10.1016/j.nimb.2015.02.066 |
[54] |
De Cesare, M.; Fifield, L. K.; Sabbarese, C.; Tims, S. G.; De Cesare, N.; D’Onofrio, A.; D’Arco, A.; Esposito, A. M.; Petraglia, A.; Roca, V.; Terrasi, F. Nucl. Instrum. Meth. B 2013, 294, 152.
doi: 10.1016/j.nimb.2012.05.020 |
[55] |
Boulyga, S. F.; Koepf, A.; Konegger-Kappel, S.; Macsik, Z.; Stadelmann, G. J. Anal. At. Spectrom. 2016, 31, 2272.
doi: 10.1039/C6JA00238B |
[56] |
Buchholz, B. A.; Brown, T. A.; Hamilton, T. F.; Hutcheon, I. D.; Marchetti, A. A.; Martinelli, R. E.; Ramon, E. C.; Tumey, S. J.; Williams, R. W. Nucl. Instrum. Meth. B 2007, 259, 733.
doi: 10.1016/j.nimb.2007.01.248 |
[57] |
Duffin, A. M.; Hart, G. L.; Hanlen, R. C.; Eiden, G. C. J. Radioan. Nucl. Chem. 2012, 296, 1031.
doi: 10.1007/s10967-012-2218-8 |
[58] |
Craig, G.; Horstwood, M. S. A.; Reid, H. J.; Sharp, B. L. J. Anal. At. Spectrom. 2020, 35, 1011.
doi: 10.1039/D0JA00066C |
[59] |
Krachler, M.; Wallenius, M.; Nicholl, A.; Mayer, K. RSC Adv. 2020, 10, 16629.
doi: 10.1039/D0RA02899A |
[60] |
Krachler, M.; Varga, Z.; Nicholl, A.; Wallenius, M.; Mayer, K. Microchem. J. 2018, 140, 24.
doi: 10.1016/j.microc.2018.03.038 |
[61] |
Wang, W.; Li, Z.; Xu, J.; Zhou, G.; Shen, X.; Zhai, L. Chinese Journal of Analytical Chemistry 2015, 43, 703. (in Chinese)
|
(汪伟, 李志明, 徐江, 周国庆, 沈小攀, 翟利华, 分析化学, 2015, 43, 703.)
|
|
[62] |
Jaegler, H.; Gourgiotis, A.; Steier, P.; Golser, R.; Diez, O.; Cazala, C. Anal. Chem. 2020, 92, 7869.
doi: 10.1021/acs.analchem.0c01121 |
[63] |
Xing, S.; Luo, M.; Wu, Y.; Liu, D.; Dai, X. J. Anal. At. Spectrom. 2019, 34, 2027.
doi: 10.1039/C9JA00209J |
[64] |
Tanimizu, M.; Sugiyama, N.; Ponzevera, E.; Bayon, G. J. Anal. At. Spectrom. 2013, 28, 1372.
doi: 10.1039/c3ja50145k |
[65] |
Wang, Y.; Hou, X.; Zhang, W.; Fan, Y. Talanta 2021, 224, 121882.
doi: 10.1016/j.talanta.2020.121882 |
[66] |
Zhao, X.; Kilius, L. R.; Litherland, A. E.; Beasley, T. Nucl. Instrum. Meth. B 1997, 126, 297.
doi: 10.1016/S0168-583X(96)01034-8 |
[67] |
Zhao, X.; Nadeau, M. J.; Kilius, L. R.; Litherland, A. E. Nucl. Instrum. Meth. B 1994, 92, 249.
doi: 10.1016/0168-583X(94)96014-3 |
[68] |
Zhao, X.; Nadeau, M. J.; Kilius, L. R.; Litherland, A. E. Earth Planet. Sci. Lett. 1994, 124, 241.
doi: 10.1016/0012-821X(94)00090-5 |
[69] |
Quinto, F.; Golser, R.; Lagos, M.; Plaschke, M.; Schafer, T.; Steier, P.; Geckeis, H. Anal. Chem. 2015, 87, 5766.
doi: 10.1021/acs.analchem.5b00980 |
[70] |
Lopez-Lora, M.; Chamizo, E.; Rozmaric, M.; Louw, D. C. Sci. Total Environ. 2020, 708, 135222.
doi: 10.1016/j.scitotenv.2019.135222 |
[71] |
Hain, K.; Steier, P.; Froehlich, M. B.; Golser, R.; Hou, X.; Lachner, J.; Nomura, T.; Qiao, J.; Quinto, F.; Sakaguchi, A. Nat. Commun. 2020, 11, 1275.
doi: 10.1038/s41467-020-15008-2 pmid: 32152279 |
[72] |
Zhao, X. L.; Francisco, B. B. A.; Kieser, W. E.; El-Jaby, A.; Cochrane, C.; Clark, I. D. Nucl. Instrum. Meth. B 2019, 459, 98.
doi: 10.1016/j.nimb.2019.08.012 |
[73] |
Kazi, Z. H.; Charles, C. R. J.; Zhao, X. L.; Cornett, R. J.; Kieser, W. E. Nucl. Instrum. Meth. B 2019, 456, 218.
doi: 10.1016/j.nimb.2019.04.006 |
[74] |
Wang, C.; Dong, K.; Zhao, X.; He, M.; Zhang, Y.; Jiang, S.; Zhao, Y.; Li, L. Atomic Energy Science and Technology 2016, 50, 732. (in Chinese)
|
(王琛, 董克君, 赵兴红, 何明, 张燕, 姜山, 赵永刚, 李力力, 原子能科学技术, 2016, 50, 732.)
|
|
[75] |
Wang, F.; Zhang, Y.; Wang, X.; Zhao, Y.; Wang, C.; Liu, Y.; Zhu, J.; Lu, J. Atomic Energy Science and Technology 2015, 49, 400. (in Chinese)
|
(王凡, 张燕, 王晓明, 赵永刚, 王琛, 刘宇昂, 朱建锐, 鹿捷, 原子能科学技术, 2015, 49, 400.)
|
|
[76] |
Shen, Y.; Wang, T.; Wang, C.; Zhang, Y.; Zhao, Y. Atomic Energy Science and Technology 2019, 53, 585. (in Chinese)
|
(沈彦, 王同兴, 王琛, 张燕, 赵永刚, 原子能科学技术, 2019, 53, 585.)
|
|
[77] |
Schneider, S.; Bister, S.; Christl, M.; Hori, M.; Shozugawa, K.; Synal, H. A.; Steinhauser, G.; Walther, C. Appl. Geochem. 2017, 85, 194.
doi: 10.1016/j.apgeochem.2017.05.022 |
[78] |
Yang, G.; Tazoe, H.; Hayano, K.; Okayama, K.; Yamada, M. Sci. Rep. 2017, 7, 13619.
doi: 10.1038/s41598-017-13998-6 |
[79] |
Shinonaga, T.; Steier, P.; Lagos, M.; Ohkura, T. Environ. Sci. Technol. 2014, 48, 3808.
doi: 10.1021/es404961w |
[80] |
Boulyga, S. F.; Sabine Becker, J.; Matusevitch, J. L.; Dietze, H. Int. J. Mass Spectrom. 2000, 203, 143.
doi: 10.1016/S1387-3806(00)00296-7 |
[81] |
Boulyga, S. F.; Prohaska, T. Anal. Bioanal. Chem. 2008, 390, 531.
pmid: 17874079 |
[82] |
Mironov, V. P.; Matusevich, J. L.; Kudrjashov, V. P.; Boulyga, S. F.; Becker, J. S. J. Environ. Monit. 2002, 4, 997.
doi: 10.1039/b207573c |
[83] |
Boulyga, S. F.; Sabine Becker, J. Fresenius J. Anal. Chem. 2001, 370, 612.
pmid: 11496994 |
[84] |
Qiao, J.; Hain, K.; Steier, P. Chemosphere 2020, 257, 127185.
doi: 10.1016/j.chemosphere.2020.127185 |
[85] |
Lopez-Lora, M.; Chamizo, E.; Levy, I.; Christl, M.; Casacuberta, N.; Kenna, T. C. Sci. Total Environ. 2020,142741.
|
[86] |
Arnason, J. G.; Pellegri, C. N.; Moore, J. L.; Lewis-Michl, E. L.; Parsons, P. J. Environ. Res. 2016, 150, 629.
doi: 10.1016/j.envres.2016.04.006 |
[87] |
Casacuberta, N.; Christl, M.; Buesseler, K. O.; Lau, Y.; Vockenhuber, C.; Castrillejo, M.; Synal, H. A.; Masque, P. Environ. Sci. Technol. 2017, 51, 9826.
doi: 10.1021/acs.est.7b03057 |
[88] |
Tims, S. G.; Froehlich, M. B.; Fifield, L. K.; Wallner, A.; De Cesare, M. J. Environ. Radioact. 2016, 151, 563.
doi: 10.1016/j.jenvrad.2015.06.020 |
[89] |
Child, D. P.; Hotchkis, M. A. C. Nucl. Instrum. Meth. B 2013, 294, 642.
doi: 10.1016/j.nimb.2012.05.018 |
[90] |
Sakaguchi, A.; Kawai, K.; Steier, P.; Imanaka, T.; Hoshi, M.; Endo, S.; Zhumadilov, K.; Yamamoto, M. Sci. Total Environ. 2010, 408, 5392.
doi: 10.1016/j.scitotenv.2010.07.073 |
[91] |
Liu, Z.; Hu, J.; Yamada, M.; Yang, G. Catena 2020, 193, 104605.
doi: 10.1016/j.catena.2020.104605 |
[92] |
Wang, C.; Hou, S.; Pang, H.; Liu, Y.; GÄGgeler, H. W.; Christl, M.; Synal, H. A. J. Glaciol. 2017, 63, 929.
doi: 10.1017/jog.2017.59 |
[93] |
Tortorello, R.; Widom, E.; Renwick, W. H. J. Environ. Radioact. 2013, 124, 287.
doi: 10.1016/j.jenvrad.2013.06.007 pmid: 23871969 |
[94] |
Sakaguchi, A.; Kadokura, A.; Steier, P.; Takahashi, Y.; Shizuma, K.; Hoshi, M.; Nakakuki, T.; Yamamoto, M. Earth Planet. Sci. Lett. 2012, 333-334, 165.
doi: 10.1016/j.epsl.2012.04.004 |
[95] |
Casacuberta, N.; Christl, M.; Lachner, J.; van der Loeff, M. R.; Masqué, P.; Synal, H. A. Geochim. Cosmochim. Acta 2014, 133, 34.
doi: 10.1016/j.gca.2014.02.012 |
[96] |
Casacuberta, N.; Masqué, P.; Henderson, G.; Rutgers van-der-Loeff, M.; Bauch, D.; Vockenhuber, C.; Daraoui, A.; Walther, C.; Synal, H. A.; Christl, M. Earth Planet. Sci. Lett. 2016, 440, 127.
doi: 10.1016/j.epsl.2016.02.020 |
[97] |
Castrillejo, M.; Casacuberta, N.; Christl, M.; Garcia-Orellana, J.; Vockenhuber, C.; Synal, H. A.; Masque, P. Sci. Total Environ. 2017, 593-594, 745.
doi: 10.1016/j.scitotenv.2017.03.201 |
[98] |
Chamizo, E.; Lopez-Lora, M.; Bressac, M.; Levy, I.; Pham, M. K. Sci. Total Environ. 2016, 565, 767.
doi: 10.1016/j.scitotenv.2016.04.142 |
[99] |
Christl, M.; Casacuberta, N.; Lachner, J.; Maxeiner, S.; Vockenhuber, C.; Synal, H.-A.; Goroncy, I.; Herrmann, J.; Daraoui, A.; Walther, C.; Michel, R. Nucl. Instrum. Meth. B 2015, 361, 510.
doi: 10.1016/j.nimb.2015.01.005 |
[100] |
Casacuberta, N.; Christl, M.; Vockenhuber, C.; Wefing, A. M.; Wacker, L.; Masque, P.; Synal, H. A.; van der Loeff, M. R. J. Geophys. Res. Oceans 2018, 123, 6909.
doi: 10.1029/2018JC014168 |
[101] |
Castrillejo, M.; Casacuberta, N.; Christl, M.; Vockenhuber, C.; Synal, H.-A.; Garcia-Ibanez, M. I.; Lherminier, P.; Sarthou, G.; Garcia-Orellana, J.; Masque, P. Biogeosciences 2018, 15, 5545.
doi: 10.5194/bg-15-5545-2018 |
[102] |
Qiao, J.; Steier, P.; Nielsen, S.; Hou, X.; Roos, P.; Golser, R. Environ. Sci. Technol. 2017, 51, 6867.
doi: 10.1021/acs.est.7b00504 |
[103] |
Villa-Alfageme, M.; Chamizo, E.; Kenna, T. C.; López-Lora, M.; Casacuberta, N.; Chang, C.; Masqué, P.; Christl, M. Chem. Geol. 2019, 517, 44.
doi: 10.1016/j.chemgeo.2019.04.003 |
[104] |
Wefing, A. M.; Christl, M.; Vockenhuber, C.; van der Loeff, M. R.; Casacuberta, N. J. Geophys. Res. Oceans 2019, 124, 882.
doi: 10.1029/2018JC014399 |
[1] | Chang Li, Zhendong Zheng, Jiangnan Zheng, Ruijun Tian. Glycoprotein Identification using Cleavable Bifunctional Probes★ [J]. Acta Chimica Sinica, 2023, 81(12): 1673-1680. |
[2] | Yuwan Chen, Wen Zhou, Xinwei Li, Kaiguang Yang, Zhen Liang, Lihua Zhang, Yukui Zhang. Research Progress of Protein-Protein Interaction Based on Liquid Chromatography Mass Spectrometry※ [J]. Acta Chimica Sinica, 2022, 80(6): 817-826. |
[3] | Yueyue Li, Ye Peng, Haojie Lu. Advances in Analysis of Linkage Isomers of Sialylated N-Glycans by Mass Spectrometry [J]. Acta Chimica Sinica, 2021, 79(6): 705-715. |
[4] | Liu Ji-Lin, Yu Kai, Zhang Hong, Jiang Jie. Progress in the Study of Electrochemical Reaction by Mass Spectrometric Ionization Sources [J]. Acta Chimica Sinica, 2020, 78(6): 504-515. |
[5] | Li Yanan, Ji Huoyan, Wang Tianyi, Shen Lei, Shi Xiuying, Wang Jianxin. Established and Optimized the Measurement of Serum Troponin I Using Liquid Chromatography Tandem Mass Spectrometry [J]. Acta Chim. Sinica, 2019, 77(6): 539-544. |
[6] | Ren Xiang, Zhang Xiaoping, Wang Yufen, Cao Jingyu, Cheng Yuanyuan, Feng Shouhua, Chen Huanwen. Intramolecular and Intermolecular Methyl Migration of Fenthion Studied by Electrospray Ionization Mass Spectrometry [J]. Acta Chimica Sinica, 2019, 77(4): 358-364. |
[7] | Wang Ze, Wong Y. -L. Elaine, Ren Juan, Chen Xiangfeng, Chan T. -W. Dominic. Recent Progress on Electron Capture Dissociation Mass Spectrometry [J]. Acta Chim. Sinica, 2019, 77(2): 130-142. |
[8] | Xia Hailun, Hua Xin, Long Yi-Tao. Visualization of the Electrolyte Migration under Electrochemical Process by ToF-SIMS [J]. Acta Chimica Sinica, 2019, 77(11): 1164-1167. |
[9] | Li Xianqin, Yu Dongping, Feng Xiaomin, Guo Zhimou, Li Xiuling, Zou Lijuan, Liang Xinmiao. A Novel Glycopeptides Enrichment Method Using Weak Cation Exchange Chromatography Material under Hydrophilic Interaction Liquid Chromatography Mode [J]. Acta Chim. Sinica, 2015, 73(10): 1074-1079. |
[10] | Feng Xiaomin, Shen Aijin, Li Xianqin, Li Xiuling, Zou Lijuan, Liang Xinmiao. Highly Selective Enrichment of Multi-Phosphopeptides by Click TE-GSH [J]. Acta Chimica Sinica, 2014, 72(10): 1085-1091. |
[11] | Chen Fangjiao, Su Yue, Guo Yinlong. Post-target Analysis for the Volatile Compounds from Salty Alpinia oxyphyllae Fructus with Headspace-gas Chromatography-quadrupole/time of Flight Mass Spectrometry [J]. Acta Chimica Sinica, 2014, 72(1): 95-104. |
[12] | Ouyang Yongzhong, Li Cao, Zhou Yafei, Zhou Zhen. Rapid Analysis of Adulterated Chinese Liquor by Extractive Electrospray Ionization Mass Spectrometry [J]. Acta Chimica Sinica, 2013, 71(12): 1625-1632. |
[13] | Kuang Min, Zhang Ying, Yang Pengyuan, Lu Haojie. Novel Ionic Matrices for Enhanced Ionization of Oligosaccharides/Glycopeptides during MALDI-MS Analysis [J]. Acta Chimica Sinica, 2013, 71(07): 1007-1010. |
[14] | Mei Zhen, Cai Wensheng, Shao Xueguang. Rapid Analysis of Pesticide Mixture by Gas Chromatography-Mass Spectrometry with a New Alternative Iterative Algorithm [J]. Acta Chimica Sinica, 2013, 71(05): 729-732. |
[15] | Liu Liting, Zhang Ying, Jiao Jing, Yang Pengyuan, Lu Haojie. Preparation of Boronic Acid-Functionalized Mesoporous Nanomaterial and Its Application in Enrichment of Glycopeptides [J]. Acta Chimica Sinica, 2013, 71(04): 535-540. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||