Acta Chimica Sinica ›› 2021, Vol. 79 ›› Issue (7): 820-852.DOI: 10.6023/A21050193 Previous Articles     Next Articles

Review

苯并三氮唑类有机光伏材料研究进展

白阳a, 薛灵伟a,*(), 王海侨a,b, 张志国a,*()   

  1. a 北京化工大学 材料科学与工程学院 北京 100029
    b 北京化工大学 北京市水性聚合物合成与应用工程技术研究中心 北京 100029
  • 投稿日期:2021-05-05 发布日期:2021-06-21
  • 通讯作者: 薛灵伟, 张志国
  • 作者简介:

    白阳, 2014年和2019年于北京化工大学材料科学与工程学院获得学士学位和硕士学位, 目前师从张志国教授, 攻读博士学位, 研究方向为有机光电功能材料.

    薛灵伟博士, 北京化工大学材料科学与工程学院博士后, 2017年于北京科技大学获得博士学位, 期间于中国科学院化学研究所联合培养, 师从李永舫院士. 研究方向为有机光电功能材料.

    王海侨, 北京化工大学教授、博士生导师, 北京市水性聚合物合成与应用工程技术研究中心主任. 华中科技大学学士、硕士、博士, 清华大学化工系博士后. 主要从事光电功能高分子材料和水性环保材料方面的研究. 发表学术论文170余篇, 申请国家发明专利20余项.

    张志国博士, 北京化工大学材料科学与工程学院教授, 博士生导师. 2009年于武汉大学获得博士学位, 期间参加“国家公派博士生联合培养项目”在新加坡学习2年. 2009年在中国科学院化学所跟随李永舫院士从事博士后研究, 2012年3月晋升副研究员, 2018年5月调到北京化工大学工作, 组建光伏材料与器件实验室. 近年紧密围绕活性层材料和界面层材料的设计和制备, 开展了系统的工作, 并多次获得世界领先的光伏效率. 2017年获得国家基金委优秀青年基金资助, 2018~2020连续3年入选Clarivate Analytics“全球高被引科学家”名单.

  • 基金资助:
    国家自然科学基金(51722308); 中央高校基本科研业务费专项资金(Buctrc201822); 中央高校基本科研业务费专项资金(XK1802-2); 北京自然科学基金(2192043); 化工资源有效利用国家重点实验室开发基金

Research Advances on Benzotriazole-based Organic Photovoltaic Materials

Yang Baia, Ling-Wei Xuea(), Hai-Qiao Wanga,b, Zhi-Guo Zhanga()   

  1. a College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
    b Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2021-05-05 Published:2021-06-21
  • Contact: Ling-Wei Xue, Zhi-Guo Zhang
  • Supported by:
    National Natural Science Foundation of China(51722308); Fundamental Research Funds for the Central Universities(Buctrc201822); Fundamental Research Funds for the Central Universities(XK1802-2); Beijing Natural Science Foundation(2192043); State Key Laboratory of Chemical Resource Engineering

Over the past two decades, organic solar cells (OSCs) have been developed rapidly with the power conversion efficiency rapidly rising from less than 5% to over 18%, which is mainly promoted by the development of various new donor and acceptor materials. As a typical electron-deficient penta-heterocycle, benzotriazoles (BTAs) derivates a variety of high-performance photovoltaic materials, including polymer donor, small-molecule donor materials, as well as non-fullerenes acceptor and polymer acceptor. Among them, the J series of polymer donors and Y series of non-fullerenes acceptors are typical examples, and thus are specially highlighted in this review. Meanwhile, molecular design strategies of those BTA-based photovoltaic materials have also been discussed. It shows that donor-acceptor (D-A) conjugated strategy is still the most efficient thus far, where A units is the BTA unit or its derivatives, and D units commonly used in BTA-based photovoltaic materials are benzodithiophene, benzodifuran, dithienosilole, indacenodithiophene, thiophene,etc. The D-A strategy is both applied for donor molecules (with the molecular structure of D-A, D-π-A-π, D-A-D-A-D,etc.), and for acceptor molecules (with the molecular structure of A-D-A, A-π-D-π-A, A-DAD-A,etc.). By adjusting their molecular structures and/or pairing of differential D and A units, various properties such as absorption band and energy levels of molecules, as well as the morphology and charge carrier mobilities in OSCs can be well controlled. Furthermore, through side-chain engineering, such as flexible side-chains (alkyl, alkoxy, alkylthiol, alkylsilyl,etc.), conjugated side-chains (substituted-thiophene or benzene,etc.), electron-withdrawing groups (F atoms, Cl atoms, dicyanomethylene,etc.), their photovoltaic properties can be further regulated. Here, this review focuses on the research progress on BTA-based photovoltaic materials and related molecular design strategies developed in recent years, and also presents perspective on its future development.

Key words: organic photovoltaic material, benzotriazole, donor, acceptor