Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (2): 168-179.DOI: 10.6023/A21110505 Previous Articles Next Articles
Review
投稿日期:
2021-11-07
发布日期:
2021-11-25
通讯作者:
冯霄
作者简介:
张蒙茜, 北京理工大学化学与化工学院, 2017级博士(化学专业), 主要从事共轭微孔聚合物薄膜的制备及气体分离应用研究. |
冯霄, 北京理工大学博士生导师, 化学与化工学院教授, 国家自然科学基金优秀青年科学基金获得者. 分别于2008年和2013年于北京理工大学材料学院取得本科与博士学位, 攻读博士期间以联合培养博士研究生身份留学于日本国家自然科学研究机构——分子科学研究所. 2013年就职于北京理工大学化学与化工学院. 主要从事关于共价有机框架材料等晶态多孔材料的构效关系研究以及膜分离相关领域应用研究. |
基金资助:
Received:
2021-11-07
Published:
2021-11-25
Contact:
Xiao Feng
Supported by:
Share
Mengxi Zhang, Xiao Feng. Fabrication Strategies of Conjugated Microporous Polymer Membranes for Molecular Separation[J]. Acta Chimica Sinica, 2022, 80(2): 168-179.
成膜方法 | 优点 | 不足 |
---|---|---|
旋涂法 | 成膜方法简单 易操作 | 仅限于可溶性骨架 |
层层组装法 | 成膜厚度可控 | 单体种类少 合成过程复杂 膜均匀程度不高 |
表面引发法 | 成膜厚度可控 易进一步官能化 | 需要特定表面修饰 单体种类少 |
界面聚合 | 成膜厚度可控 反应条件温和 膜可自支撑 | 反应类型较少 膜转移时易被破坏 |
电聚合 | 成膜厚度可控 反应条件温和 无需催化剂 | 难完整从基底剥离 多数膜刚性强、易碎 |
离子化“溶解”法 | 成膜厚度可控 易于官能化 | 单体种类较少 |
成膜方法 | 优点 | 不足 |
---|---|---|
旋涂法 | 成膜方法简单 易操作 | 仅限于可溶性骨架 |
层层组装法 | 成膜厚度可控 | 单体种类少 合成过程复杂 膜均匀程度不高 |
表面引发法 | 成膜厚度可控 易进一步官能化 | 需要特定表面修饰 单体种类少 |
界面聚合 | 成膜厚度可控 反应条件温和 膜可自支撑 | 反应类型较少 膜转移时易被破坏 |
电聚合 | 成膜厚度可控 反应条件温和 无需催化剂 | 难完整从基底剥离 多数膜刚性强、易碎 |
离子化“溶解”法 | 成膜厚度可控 易于官能化 | 单体种类较少 |
[1] |
Sholl, D. S.; Lively, R. P. Nature 2016, 532, 435.
doi: 10.1038/532435a |
[2] |
(a) Ockwig, N. W.; Nenoff, T. M. Chem. Rev. 2007, 107, 4078.
doi: 10.1021/cr0501792 |
(b) Iulianelli, A.; Algieri, C.; Donato, L.; Garofalo, A.; Galiano, F.; Bagnato, G.; Basile, A.; Figoli, A. Int. J. Hydrogen Energy 2017, 42, 22138.
doi: 10.1016/j.ijhydene.2017.04.060 |
|
[3] |
(a) Koros, W. J.; Mahajan, R. J. Membr. Sci. 2000, 175, 181.
doi: 10.1016/S0376-7388(00)00418-X |
(b) Ku, A. Y.; Kulkarni, P.; Shisler, R.; Wei, W. J. Membr. Sci. 2011, 367, 233.
doi: 10.1016/j.memsci.2010.10.066 |
|
[4] |
Wang, L.; Boutilier, M. S. H.; Kidambi, P. R.; Jang, D.; Hadjiconstantinou, N. G.; Karnik, R. Nat. Nanotechnol. 2017, 12, 509.
doi: 10.1038/nnano.2017.72 |
[5] |
Dechnik, J.; Gascon, J.; Doonan, C. J.; Janiak, C.; Sumby, C. J. Angew. Chem., Int. Ed. 2017, 56, 9292.
doi: 10.1002/anie.v56.32 |
[6] |
(a) Greenfield, M. L.; Theodorou, D. N. Macromolecules 1993, 26, 5461.
doi: 10.1021/ma00072a026 |
(b) Park, H. B.; Kamcev, J.; Robeson, L. M.; Elimelech, M.; Freeman, B. D. Science 2017, 356, eaab0530.
doi: 10.1126/science.aab0530 |
|
(c) Robeson, L. M. J. Membr. Sci. 2008, 320, 390.
doi: 10.1016/j.memsci.2008.04.030 |
|
(d) Sanders, D. F.; Smith, Z. P.; Guo, R.; Robeson, L. M.; McGrath, J. E.; Paul, D. R.; Freeman, B. D. Polymer 2013, 54, 4729.
doi: 10.1016/j.polymer.2013.05.075 |
|
(e) Robeson, L. M.; Liu, Q.; Freeman, B. D.; Paul, D. R. J. Membr. Sci. 2015, 476, 421.
doi: 10.1016/j.memsci.2014.11.058 |
|
[7] |
(a) Choi, J.; Jeong, H. K.; Snyder, M. A.; Stoeger, J. A.; Masel, R. I.; Tsapatsis, M. Science 2009, 325, 590.
doi: 10.1126/science.1176095 |
(b) Lai, Z.; Bonilla, G.; Diaz, I.; Nery, J. G.; Sujaoti, K.; Amat, M. A.; Kokkoli, E.; Terasaki, O.; Thompson, R. W.; Tsapatsis, M.; Vlachos, D. G. Science 2003, 300, 456.
doi: 10.1126/science.1082169 |
|
[8] |
(a) Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444.
doi: 10.1126/science.1230444 |
(b) Lin, J. Y. S. Science 2016, 353, 121.
doi: 10.1126/science.aag2267 |
|
(c) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem., Int. Ed. 2004, 43, 2334.
doi: 10.1002/(ISSN)1521-3773 |
|
(d) Qiu, S.; Xue, M.; Zhu, G. Chem. Soc. Rev. 2014, 43, 6116.
doi: 10.1039/C4CS00159A |
|
(e) Lü, L.; Zhao, Y.; Wei, Y.; Wang, H. Acta Chim. Sinica 2021, 79, 869. (in Chinese)
doi: 10.6023/A21030099 |
|
( 吕露茜, 赵娅俐, 魏嫣莹, 王海辉, 化学学报, 2021, 79, 869.)
|
|
(f) Li, X.; Yan, B.; Huang, W.; Fu, L.; Sun, X.; Lü, A. Acta Chim. Sinica 2021, 79, 459. (in Chinese)
doi: 10.6023/A20100494 |
|
( 李旭飞, 闫保有, 黄维秋, 浮历沛, 孙宪航, 吕爱华, 化学学报, 2021, 79, 459.)
|
|
(g) Zhang, H.; Li, G.; Zhang, K.; Liao, C. Acta Chim. Sinica 2017, 75, 841. (in Chinese)
doi: 10.6023/A17040168 |
|
( 张贺, 李国良, 张可刚, 廖春阳, 化学学报, 2017, 75, 841.)
|
|
[9] |
(a) Feng, X.; Ding, X.; Jiang, D. Chem. Soc. Rev. 2012, 41, 6010.
doi: 10.1039/c2cs35157a |
(b) El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O’Keeffe, M.; Yaghi, O. M. Science 2007, 316, 268.
doi: 10.1126/science.1139915 |
|
(c) Li, Y.; Guo, L.; Lü, Y.; Zhao, Z.; Ma, Y.; Chen, W.; Xing, G.; Jiang, D.; Chen, L. Angew. Chem., Int. Ed. 2021, 60, 5363.
doi: 10.1002/anie.v60.10 |
|
(d) Li, Y.; Chen, Q.; Xu, T.; Xie, Z.; Liu, J.; Yu, X.; Ma, S.; Qin, T.; Chen, L. J. Am. Chem. Soc. 2019, 141, 13822.
doi: 10.1021/jacs.9b03463 |
|
(e) Xie, Z.; Wang, B.; Yang, Z.; Yang, X.; Yu, X.; Xing, G.; Zhang, Y.; Chen, L. Angew. Chem., Int. Ed. 2019, 58, 15742.
doi: 10.1002/anie.v58.44 |
|
(f) Jiang, C.; Feng, X.; Wang, B. Acta Chim. Sinica 2020, 78, 466. (in Chinese)
doi: 10.6023/A20030088 |
|
( 蒋成浩, 冯霄, 王博, 化学学报, 2020, 78, 466.)
|
|
[10] |
(a) Zimmerman, C. M.; Singh, A.; Koros, W. J. J. Membr. Sci. 1997, 137, 145.
doi: 10.1016/S0376-7388(97)00194-4 |
(b) Zhang, Y.; Feng, X.; Yuan, S.; Zhou, J.; Wang, B. Inorg. Chem. Front. 2016, 3, 896.
doi: 10.1039/C6QI00042H |
|
(c) Zhu, X.; Hua, Y. Y.; Tian, C. C.; Abney, C. W.; Zhang, P.; Jin, T.; Liu, G. P.; Browning, K. L.; Sacci, R. L.; Veith, G. M.; Zhou, H. C.; Jin, W. Q.; Dai, S. Angew. Chem., Int. Ed. 2018, 57, 2816.
doi: 10.1002/anie.201710420 |
|
(d) Biswal, B. P.; Chaudhari, H. D.; Banerjee, R.; Kharul, U. K. Chemistry 2016, 22, 4695.
|
|
(e) Kang, Z.; Peng, Y.; Qian, Y.; Yuan, D.; Addicoat, M. A.; Heine, T.; Hu, Z.; Tee, L.; Guo, Z.; Zhao, D. Chem. Mater. 2016, 28, 1277.
doi: 10.1021/acs.chemmater.5b02902 |
|
(f) Liu, G.; Chernikova, V.; Liu, Y.; Zhang, K.; Belmabkhout, Y.; Shekhah, O.; Zhang, C.; Yi, S.; Eddaoudi, M.; Koros, W. J. Nat. Mater. 2018, 17, 283.
doi: 10.1038/s41563-017-0013-1 |
|
(g) Kitao, T.; Zhang, Y.; Kitagawa, S.; Wang, B.; Uemura, T. Chem. Soc. Rev. 2017, 46, 3108.
doi: 10.1039/C7CS00041C |
|
(h) Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabres, I. X. F. X.; Gascon, J. Nat. Mater. 2015, 14, 48.
doi: 10.1038/nmat4113 |
|
(i) Vinh-Thang, H.; Kaliaguine, S. Chem. Rev. 2013, 113, 4980.
doi: 10.1021/cr3003888 |
|
[11] |
(a) Carreon, M. A.; Li, S.; Falconer, J. L.; Noble, R. D. J. Am. Chem. Soc. 2008, 130, 5412.
doi: 10.1021/ja801294f |
(b) Saufi, S. M.; Ismail, A. F. Carbon 2004, 42, 241.
doi: 10.1016/j.carbon.2003.10.022 |
|
(c) Lee, S. Solid State Ionics 2003, 158, 287.
doi: 10.1016/S0167-2738(02)00821-4 |
|
(d) Wang, H.; Cong, Y.; Yang, W. Catal. Today 2003, 82, 157.
doi: 10.1016/S0920-5861(03)00228-1 |
|
[12] |
(a) Peng, Y.; Li, Y. S.; Ban, Y. J.; Jin, H.; Jiao, W. M.; Liu, X. L.; Yang, W. S. Science 2014, 346, 1356.
doi: 10.1126/science.1254227 |
(b) Fu, J.; Das, S.; Xing, G.; Ben, T.; Valtchev, V.; Qiu, S. J. Am. Chem. Soc. 2016, 138, 7673.
doi: 10.1021/jacs.6b03348 |
|
[13] |
(a) Lee, J. S. M.; Cooper, A. I. Chem. Rev. 2020, 120, 2171.
doi: 10.1021/acs.chemrev.9b00399 |
(b) Zhang, H.; Zhang, Y.; Gu, C.; Ma, Y. Adv. Energy Mater. 2015, 5, 1402175.
doi: 10.1002/aenm.201402175 |
|
(c) Liu, Z.; Yin, Y.; Eginligil, M.; Wang, L.; Liu, J.; Huang, W. Polym. Chem. 2021, 12, 807.
doi: 10.1039/D0PY01368D |
|
(d) Meng, S.; Zou, X.; Liu, C.; Ma, H.; Zhao, N.; Ren, H.; Jia, M.; Liu, J.; Zhu, G. ChemCatChem 2016, 8, 1.
doi: 10.1002/cctc.201501371 |
|
(e) Yang, S.-J.; Ding, X.-S.; Han, B.-H. Macromolecules 2018, 51, 947.
doi: 10.1021/acs.macromol.7b02515 |
|
(f) Sun, C.-J.; Zhao, X.-Q.; Wang, P.-F.; Wang, H.; Han, B.-H. Sci. China Chem. 2017, 60, 1067.
doi: 10.1007/s11426-017-9069-6 |
|
[14] |
Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Angew. Chem., Int. Ed. 2007, 46, 8574.
doi: 10.1002/anie.v46:45 |
[15] |
Chen, L.; Honsho, Y.; Seki, S.; Jiang, D. J. Am. Chem. Soc. 2010, 132, 6742.
doi: 10.1021/ja100327h |
[16] |
Jiang, J.-X.; Trewin, A.; Adams, D. J.; Cooper, A. I. Chem. Sci. 2011, 2, 1777.
doi: 10.1039/c1sc00329a |
[17] |
Sun, L.; Liang, Z.; Yu, J.; Xu, R. Polym. Chem. 2013, 4, 1932.
doi: 10.1039/c2py21034g |
[18] |
Yuan, S.; Dorney, B.; White, D.; Kirklin, S.; Zapol, P.; Yu, L.; Liu, D. J. Chem. Commun. 2010, 46, 4547.
doi: 10.1039/c0cc00235f |
[19] |
Kou, Y.; Xu, Y.; Guo, Z.; Jiang, D. Angew. Chem., Int. Ed. 2011, 50, 8753.
doi: 10.1002/anie.201103493 |
[20] |
Xu, C.; Hedin, N. J. Mater. Chem. A 2013, 1, 3406.
doi: 10.1039/c3ta01160g |
[21] |
Zhu, X.; Tian, C.; Jin, T.; Wang, J.; Mahurin, S. M.; Mei, W.; Xiong, Y.; Hu, J.; Feng, X.; Liu, H.; Dai, S. Chem. Commun. 2014, 50, 15055.
doi: 10.1039/C4CC07255C |
[22] |
Lu, G.; Yang, H.; Zhu, Y.; Huggins, T.; Ren, Z. J.; Liu, Z.; Zhang, W. J. Mater. Chem. A 2015, 3, 4954.
doi: 10.1039/C4TA06231K |
[23] |
Zhang, Y.; A, S.; Zou, Y.; Luo, X.; Li, Z.; Xia, H.; Liu, X.; Mu, Y. J. Mater. Chem. A 2014, 2, 13422.
doi: 10.1039/C4TA01871K |
[24] |
Liao, Y.; Wang, H.; Zhu, M.; Thomas, A. Adv. Mater. 2018, 30, 1705710.
doi: 10.1002/adma.v30.12 |
[25] |
Gu, C.; Chen, Y.; Zhang, Z.; Xue, S.; Sun, S.; Zhang, K.; Zhong, C.; Zhang, H.; Pan, Y.; Lü, Y.; Yang, Y.; Li, F.; Zhang, S.; Huang, F.; Ma, Y. Adv. Mater. 2013, 25, 3443.
doi: 10.1002/adma.v25.25 |
[26] |
Germain, J.; Frechet, J. M.; Svec, F. Chem. Commun. 2009, 1526.
|
[27] |
Weber, J.; Thomas, A. J. Am. Chem. Soc. 2008, 130, 6334.
doi: 10.1021/ja801691x |
[28] |
(a) Bhunia, A.; Vasylyeva, V.; Janiak, C. Chem. Commun. 2013, 49, 3961.
doi: 10.1039/c3cc41382a |
(b) Liu, X.; Li, H.; Zhang, Y.; Xu, B.; A, S.; Xia, H.; Mu, Y. Polym. Chem. 2013, 4, 2445.
doi: 10.1039/c3py00083d |
|
[29] |
(a) Zhang, W.; Li, C.; Yuan, Y.-P.; Qiu, L.-G.; Xie, A.-J.; Shen, Y.-H.; Zhu, J.-F. J. Mater. Chem. 2010, 20, 6413.
doi: 10.1039/c0jm01392g |
(b) Zhang, W.; Liang, F.; Li, C.; Qiu, L. G.; Yuan, Y. P.; Peng, F. M.; Jiang, X.; Xie, A. J.; Shen, Y. H.; Zhu, J. F. J. Hazard. Mater. 2011, 186, 984.
doi: 10.1016/j.jhazmat.2010.11.093 |
|
[30] |
(a) Zhang, P.; Weng, Z.; Guo, J.; Wang, C. Chem. Mater. 2011, 23, 5243.
doi: 10.1021/cm202283z |
(b) Muenmart, D.; Foster, A. B.; Harvey, A.; Chen, M.-T.; Navarro, O.; Promarak, V.; McCairn, M. C.; Behrendt, J. M.; Turner, M. L. Macromolecules 2014, 47, 6531.
doi: 10.1021/ma501402h |
|
[31] |
Cheng, G.; Hasell, T.; Trewin, A.; Adams, D. J.; Cooper, A. I. Angew. Chem., Int. Ed. 2012, 51, 12727.
doi: 10.1002/anie.201205521 |
[32] |
Lindemann, P.; Tsotsalas, M.; Shishatskiy, S.; Abetz, V.; Krolla- Sidenstein, P.; Azucena, C.; Monnereau, L.; Beyer, A.; Gölzhäuser, A.; Mugnaini, V.; Gliemann, H.; Bräse, S.; Wöll, C. Chem. Mater. 2014, 26, 7189.
doi: 10.1021/cm503924h |
[33] |
(a) Liang, B.; Wang, H.; Shi, X.; Shen, B.; He, X.; Ghazi, Z. A.; Khan, N. A.; Sin, H.; Khattak, A. M.; Li, L.; Tang, Z. Nat. Chem. 2018, 10, 961.
doi: 10.1038/s41557-018-0093-9 |
(b) Lindemann, P.; Schade, A.; Monnereau, L.; Feng, W.; Batra, K.; Gliemann, H.; Levkin, P.; Bräse, S.; Wöll, C.; Tsotsalas, M. J. Mater. Chem. A 2016, 4, 6815.
doi: 10.1039/C5TA09429A |
|
(c) Senkovskyy, V.; Senkovska, I.; Kiriy, A. ACS Macro Lett. 2012, 1, 494.
doi: 10.1021/mz200204g |
|
(d) Becker, D.; Heidary, N.; Horch, M.; Gernert, U.; Zebger, I.; Schmidt, J.; Fischer, A.; Thomas, A. Chem. Commun. 2015, 51, 4283.
doi: 10.1039/C4CC09637A |
|
[34] |
(a) Chen, Z.; Chen, M.; Yu, Y.; Wu, L. Chem. Commun. 2017, 53, 1989.
doi: 10.1039/C6CC09763D |
(b) Shao, P.; Yao, R.; Li, G.; Zhang, M.; Yuan, S.; Wang, X.; Zhu, Y.; Zhang, X.; Zhang, L.; Feng, X.; Wang, B. Angew. Chem., Int. Ed. 2020, 59, 4401.
doi: 10.1002/anie.v59.11 |
|
[35] |
(a) Gu, C.; Huang, N.; Gao, J.; Xu, F.; Xu, Y.; Jiang, D. Angew. Chem., Int. Ed. 2014, 53, 4850.
doi: 10.1002/anie.201402141 |
(b) Gu, C.; Huang, N.; Chen, Y.; Qin, L.; Xu, H.; Zhang, S.; Li, F.; Ma, Y.; Jiang, D. Angew. Chem., Int. Ed. 2015, 54, 13594.
doi: 10.1002/anie.201506570 |
|
[36] |
(a) Wang, L.; Zeng, C.; Xu, H.; Yin, P.; Chen, D.; Deng, J.; Li, M.; Zheng, N.; Gu, C.; Ma, Y. Chem. Sci. 2019, 10, 1023.
doi: 10.1039/C8SC04255A |
(b) Tang, X.; Ma, N.; Xu, H.; Zhang, H.; Zhang, Q.; Cai, L.; Otake, K.; Yin, P.; Kitagawa, S.; Horike, S.; Gu, C. Mater. Horiz. 2021, 8, 3088.
doi: 10.1039/D1MH01147B |
|
(c) Wang, L.; Jiang, Q.; Zhao, D.; Zhang, Q.; Jia, Y.; Gu, C.; Hu, D.; Ma, Y. CCS Chem. 2021, 3, 2688.
doi: 10.31635/ccschem.020.202000528 |
|
[37] |
(a) Zhang, M.; Jing, X.; Zhao, S.; Shao, P.; Zhang, Y.; Yuan, S.; Li, Y.; Gu, C.; Wang, X.; Ye, Y.; Feng, X.; Wang, B. Angew. Chem., Int. Ed. 2019, 58, 8768.
doi: 10.1002/anie.v58.26 |
(b) Zhang, M.; Yu, A.; Wu, X.; Shao, P.; Huang, X.; Ma, D.; Han, X.; Xie, J.; Feng, X.; Wang, B. Nano Res. 2021, DOI: 10.1007/s12274-021-3750-z.
doi: 10.1007/s12274-021-3750-z |
|
(c) Jimenez-Solomon, M. F.; Song, Q.; Jelfs, K. E.; Munoz-Ibanez, M.; Livingston, A. G. Nat. Mater. 2016, 15, 760.
doi: 10.1038/nmat4638 |
|
(d) Shan, M.; Liu, X.; Wang, X.; Yarulina, I.; Seoane, B.; Kapteijn, F.; Gascon, J. Sci. Adv. 2018, 4, 1698.
|
|
[38] |
(a) Zhou, Z.; Guo, D.; Shinde, D. B.; Cao, L.; Li, Z.; Li, X.; Lu, D.; Lai, Z. ACS Nano 2021, 15, 11970.
doi: 10.1021/acsnano.1c03194 |
(b) Zhou, Z.; Shinde, D. B.; Guo, D.; Cao, L.; Nuaimi, R. A.; Zhang, Y.; Enakonda, L. R.; Lai, Z. Adv. Funct. Mater. 2021, 2108672.
|
|
[39] |
(a) He, X.; Sin, H.; Liang, B.; Ghazi, Z. A.; Khattak, A. M.; Khan, N. A.; Alanagh, H. R.; Li, L.; Lu, X.; Tang, Z. Adv. Funct. Mater. 2019, 29, 1900134.
doi: 10.1002/adfm.v29.32 |
(b) Tiwari, K.; Sarkar, P.; Modak, S.; Singh, H.; Pramanik, S. K.; Karan, S.; Das, A. Adv. Mater. 2020, 32, 1905621.
doi: 10.1002/adma.v32.8 |
|
(c) Li, K.; Zhu, J.; Liu, D.; Zhang, Y.; Van der Bruggen, B. Chem. Mater. 2021, 33, 7047.
doi: 10.1021/acs.chemmater.1c02143 |
|
(d) Zhou, Z.; Li, X.; Guo, D.; Shinde, D. B.; Lu, D.; Chen, L.; Liu, X.; Cao, L.; Aboalsaud, A. M.; Hu, Y.; Lai, Z. Nat. Commun. 2020, 11, 5323.
doi: 10.1038/s41467-020-19182-1 |
|
[40] |
(a) Gu, C.; Huang, N.; Wu, Y.; Xu, H.; Jiang, D. Angew. Chem., Int. Ed. 2015, 54, 11540.
doi: 10.1002/anie.v54.39 |
(b) Lindemann, P.; Schade, A.; Monnereau, L.; Feng, W.; Batra, K.; Gliemann, H.; Levkin, P.; Brase, S.; Woll, C.; Tsotsalas, M. J. Mater. Chem. A 2016, 4, 6815.
doi: 10.1039/C5TA09429A |
|
[41] |
(a) Yang, S.; Yang, C.; Zhang, X.; Zheng, Z.; Bi, S.; Zhang, Y.; Zhou, H. J. Mater. Chem. C 2018, 6, 9044.
doi: 10.1039/C8TC02933D |
(b) Bai, S.; Hu, Q.; Zeng, Q.; Wang, M.; Wang, L. ACS Appl. Mater. Inter. 2018, 10, 11319.
doi: 10.1021/acsami.8b00554 |
|
[42] |
Zhang, Q.; Dong, H.; Hu, W. J. Mater. Chem. C 2018, 6, 10672.
doi: 10.1039/C8TC04149K |
[43] |
Liu, J.; Wei, W.; Jiang, J. ACS Sustainable Chem. Eng. 2020, 8, 2892.
doi: 10.1021/acssuschemeng.9b07207 |
[44] |
Mulunda, M. M.; Zhang, Z.; Nies, E.; van Goethem, C.; Vankelecom, I. F. J.; Koeckelberghs, G. Macromol. Chem. Phys. 2018, 219, 1800024.
doi: 10.1002/macp.v219.12 |
[45] |
Huang, Y.; Zang, Y.; Xu, L.; Lei, T.; Cui, J.; Xie, Y.; Wang, J.; Jia, H.; Miao, F. Sep. Purif. Technol. 2021, 266, 118529.
doi: 10.1016/j.seppur.2021.118529 |
[46] |
(a) Chuah, C. Y.; Goh, K.; Yang, Y.; Gong, H.; Li, W.; Karahan, H. E.; Guiver, M. D.; Wang, R.; Bae, T. H. Chem. Rev. 2018, 118, 8655.
doi: 10.1021/acs.chemrev.8b00091 |
(b) Samarasinghe, S.; Chuah, C. Y.; Karahan, H. E.; Sethunga, G.; Bae, T. H. Membranes 2020, 10, 75.
doi: 10.3390/membranes10040075 |
|
[47] |
(a) Marchetti, P.; Jimenez Solomon, M. F.; Szekely, G.; Livingston, A. G. Chem. Rev. 2014, 114, 10735.
doi: 10.1021/cr500006j |
(b) Szekely, G.; Jimenez-Solomon, M. F.; Marchetti, P.; Kim, J. F.; Livingston, A. G. Green Chem. 2014, 16, 4440.
doi: 10.1039/C4GC00701H |
|
(c) Liang, B.; He, X.; Hou, J.; Li, L.; Tang, Z. Adv. Mater. 2019, 31, e1806090.
|
|
[48] |
(a) Mi, B. Science 2014, 343, 740.
doi: 10.1126/science.1250247 |
(b) Liu, P.; Hou, J.; Zhang, Y.; Li, L.; Lu, X.; Tang, Z. Inorg. Chem. Front. 2020, 7, 2560.
doi: 10.1039/D0QI00307G |
|
[49] |
(a) Shen, J.; Okamoto, Y. Chem. Rev. 2016, 116, 1094.
doi: 10.1021/acs.chemrev.5b00317 |
(b) Navarro- Sanchez, J.; Argente-Garcia, A. I.; Moliner-Martinez, Y.; Roca- Sanjuan, D.; Antypov, D.; Campins-Falco, P.; Rosseinsky, M. J.; Marti-Gastaldo, C. J. Am. Chem. Soc. 2017, 139, 4294.
doi: 10.1021/jacs.7b00280 |
|
(c) Sun, Z.; Hou, J.; Li, L.; Tang, Z. Coordin. Chem. Rev. 2020, 425, 213481.
doi: 10.1016/j.ccr.2020.213481 |
[1] | Wen He, Bo Wang, Hanjun Feng, Xiangru Kong, Tao Li, Rui Xiao. Research Progress of CO2 Capture and Membrane Separation by Pebax Based Materials [J]. Acta Chimica Sinica, 2024, 82(2): 226-241. |
[2] | Hangqing Lin, Ruoru Ma, Yilan Jiang, Murong Xu, Yangpeng Lin, Kezhao Du. Research Progress of Materials Used for Elemental Halogen Capture [J]. Acta Chimica Sinica, 2024, 82(1): 62-74. |
[3] | Jianchuan Liu, Cuiyan Li, Yaozu Liu, Yujie Wang, Qianrong Fang. Highly-Stable Two-Dimensional Bicarbazole-based sp2-Carbon-conjugated Covalent Organic Framework for Efficient Electrocatalytic Oxygen Reduction★ [J]. Acta Chimica Sinica, 2023, 81(8): 884-890. |
[4] | Huang Gang, Chen Yuzhen, Jiang Hailong. Metal-Organic Frameworks for Catalysis [J]. Acta Chimica Sinica, 2016, 74(2): 113-129. |
[5] | Sun Lei, Deng Weiqiao. Progress and Prospect of Theoretical Simulation of Microporous Materials [J]. Acta Chim. Sinica, 2015, 73(6): 579-586. |
[6] | Zhou Rendan, Li Laisheng, Cheng Biaoping, Nie Guizhen, Zhang Hongfu. Preparation and Evaluation of a Novel bis(β-cyclodextrin)-bonded SBA-15 Chiral Stationary Phase for HPLC [J]. Acta Chimica Sinica, 2014, 72(6): 720-730. |
[7] | Xiong Jingfang, Xiao Pei, Wu Qiang, Wang Xizhang, Hu Zheng. Synthesis and Gas-Sensing Properties of ZnO Porous Microflowers [J]. Acta Chimica Sinica, 2014, 72(4): 433-439. |
[8] | Sui Dong, Huang Yi, Huang Lu, Zhang Yi, Chen Yongsheng. Investigation of Gas Storage Properties of Graphene Material Prepared by Microwave-assisted Reduction of Graphene Oxide [J]. Acta Chimica Sinica, 2014, 72(3): 382-387. |
[9] | Cheng Fangyi, Chen Jun. Nanoporous Catalysts for Rechargeable Li-air Batteries [J]. Acta Chimica Sinica, 2013, 71(04): 473-477. |
[10] | Shao Yue, Ma Yong. Amino Group Surface-functionalized Ordered Mesoporous Materials:One-pot Synthesis, Heavy-metal Ion and CO2 Adsorption [J]. Acta Chimica Sinica, 2012, 70(18): 1957-1962. |
[11] | SONG Lin, SHU Da-Zhang, SUN Xiao-Yu, HONG Shi-Long, SUN Dong-Mei. Multi-level assembly and synthesis of Spherical meso-level outlet hydroapatite nanoparticles [J]. Acta Chimica Sinica, 2009, 67(23): 2697-2702. |
[12] | Yu Ningya;Gong Yanjun;Wang Shuguo;Wu Dong;Sun Yuhan;Luo Qing;Liu Wuyang;Deng Feng. Direct Synthesis of Mesoporous Organosilica from Sodium Silicate and Organosiloxane [J]. Acta Chimica Sinica, 2003, 61(1): 58-62. |
[13] | Cao Dapeng;Wang Wenchuan;Duan Xue;Jiao Qingze. Monte carblo simulation of natural gas adsorption storage in pillared layered material [J]. Acta Chimica Sinica, 2001, 59(2): 297-300. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||