Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (6): 714-723.DOI: 10.6023/A22010017 Previous Articles Next Articles
Article
刘雨泽a, 李昆华a, 黄佳兴a, 于曦a,b,*(), 胡文平a,b,*()
投稿日期:
2022-01-10
发布日期:
2022-07-07
通讯作者:
于曦, 胡文平
基金资助:
Yuze Liua, Kunhua Lia, Jiaxing Huanga, Xi Yua,b(), Wenping Hua,b()
Received:
2022-01-10
Published:
2022-07-07
Contact:
Xi Yu, Wenping Hu
Supported by:
Share
Yuze Liu, Kunhua Li, Jiaxing Huang, Xi Yu, Wenping Hu. Accurate Prediction of the Boiling Point of Organic Molecules by Multi-Component Heterogeneous Learning Model[J]. Acta Chimica Sinica, 2022, 80(6): 714-723.
No. | Name | Type | Detail | |
---|---|---|---|---|
1 | Log P | Molecular properties | Octanol-water partition coeff. | |
2 | nROH | Functional group | Number of hydroxyl groups | |
3 | nROR | Functional group | Number of ethers | |
4 | nR=O | Functional group | Number of carbonyl | |
5 | nRNH2 | Functional group | Number of 1st amine | |
6 | nRNHR | Functional group | Number of 2st amine | |
7 | nRNR2 | Functional Group | Number of 3st amine | |
8 | nRCN | Functional Group | Number of nitriles | |
9 | nSatom | Constitutional indices | Number of Surfur atom | |
10 | nFatom | Constitutional indices | Number of Fluorine atom | |
11 | nClatom | Constitutional indices | Number of Chlorine atom | |
12 | nBratom | Constitutional indices | Number of Bromine atom | |
13 | nIatom | Constitutional indices | Number of Iodine atom | |
14 | nCatom | Constitutional indices | Number of carbon atom | |
15 | HA | Structural Parameter | Number of acceptor atom for H-bond | |
16 | HD | Structural Parameter | Number of donor atom for H-bond | |
17 | nCharge | Constitutional indices | Total charge | |
18 | Chi2n | Topological indices | 2-Path kier shape index | |
19 | AromR | Ring descriptors | Aromatic Ratio |
No. | Name | Type | Detail | |
---|---|---|---|---|
1 | Log P | Molecular properties | Octanol-water partition coeff. | |
2 | nROH | Functional group | Number of hydroxyl groups | |
3 | nROR | Functional group | Number of ethers | |
4 | nR=O | Functional group | Number of carbonyl | |
5 | nRNH2 | Functional group | Number of 1st amine | |
6 | nRNHR | Functional group | Number of 2st amine | |
7 | nRNR2 | Functional Group | Number of 3st amine | |
8 | nRCN | Functional Group | Number of nitriles | |
9 | nSatom | Constitutional indices | Number of Surfur atom | |
10 | nFatom | Constitutional indices | Number of Fluorine atom | |
11 | nClatom | Constitutional indices | Number of Chlorine atom | |
12 | nBratom | Constitutional indices | Number of Bromine atom | |
13 | nIatom | Constitutional indices | Number of Iodine atom | |
14 | nCatom | Constitutional indices | Number of carbon atom | |
15 | HA | Structural Parameter | Number of acceptor atom for H-bond | |
16 | HD | Structural Parameter | Number of donor atom for H-bond | |
17 | nCharge | Constitutional indices | Total charge | |
18 | Chi2n | Topological indices | 2-Path kier shape index | |
19 | AromR | Ring descriptors | Aromatic Ratio |
No. | Descriptora | Typeb | Detail | |
---|---|---|---|---|
1 | Sv | Constitutional indices | Sum of VDW volumes | |
2 | Sp | Constitutional indices | Sum of polarizabilities | |
3 | nBO | Constitutional indices | Number of non-H bonds | |
4 | SCBO | Constitutional indices | Sum of conventional bond orders | |
5 | nH | Constitutional indices | Numbers of Hydrogen atoms | |
6 | pilD | Walk and path counts | Conventional bond order ID number | |
7 | IDET | Information indices | Total information content on the distance equality | |
8 | HVcpx | Information indices | graph vertex complexity index | |
9 | TlC1 | Information indices | Total Information Content index | |
10 | ClC0 | Information indices | Complementary Information Content index | |
11 | ATS4m | 2D autocorrelations | B-M autocorrelation of lag 4 (log function) weighted by mass | |
12 | ATS2p | 2D autocorrelations | B-M autocorrelation of lag 2 (log function) weighted by polarizability | |
13 | ATS1li | 2D autocorrelations | B-M autocorrelation of lag 1 (log function) weighted by ionization potential | |
14 | ATS3i | 2D autocorrelations | B-M autocorrelation of lag 3 (log function) weighted by ionization potential | |
15 | ATSC1i | 2D autocorrelations | Centred B-M autocorrelation of lag 1 weighted by ionization potential | |
16 | MATS1i | 2D autocorrelations | Moran autocorrelation of lag 1 weighted by ionization potential | |
17 | GGl10 | 2D autocorrelations | topological charge index of order 10 | |
18 | SpMin3_Bh(m) | Burden eigenvalues | smallest eigenvalue n. 3 of Burden matrix weighted by mass | |
19 | SpMin4_Bh(m) | Burden eigenvalues | smallest eigenvalue n. 4 of Burden matrix weighted by mass | |
20 | P_VSA_m_2 | P_VSA-like descriptors | P_VSA-like on mass, bin 2 | |
21 | P_VSA_e_2 | P_VSA-like descriptors | P_VSA-like on Sanderson electronegativity, bin 2 | |
22 | P_VSA_p_1 | P_VSA-like descriptors | P_VSA-like on polarizability, bin 1 | |
23 | P_VSA_ppp_L | P_VSA-like descriptors | P_VSA-like on potential pharmacophore points, L-lipophilic | |
24 | P_VSA_ppp_ar | P_VSA-like descriptors | P_VSA-like on potential pharmacophore points, ar-aromatic atoms | |
25 | P_VSA_charge_6 | P_VSA-like descriptors | P_VSA-like on partial charges, bin 6 | |
26 | nCbH | Functional group counts | number of unsubstituted benzene C(sp2) | |
27 | CATS2D_03_LL | Pharmacophore descriptors | CATS2D Lipophilic-Lipophilic at lag 03 | |
28 | Qpos | Charge descriptors | total positive charge | |
29 | RPCG | Charge descriptors | relative positive charge | |
30 | MLOGP2 | Molecular properties | squared logP | |
31 | LOGPcons | Molecular properties | Octanol-water partition coeff. (consensus) | |
32 | PDI | Molecular properties | packing density index | |
33 | BLTD48 | Molecular properties | Verhaar Daphnia base-line toxicity from MLOGP (mmol/L) | |
34 | DLS_cons | Drug-like indices | DRAGON consensus drug-like score | |
35 | MDEC-23 | MDE descriptors | molecular distance edge between all secondary and tertiary carbons |
No. | Descriptora | Typeb | Detail | |
---|---|---|---|---|
1 | Sv | Constitutional indices | Sum of VDW volumes | |
2 | Sp | Constitutional indices | Sum of polarizabilities | |
3 | nBO | Constitutional indices | Number of non-H bonds | |
4 | SCBO | Constitutional indices | Sum of conventional bond orders | |
5 | nH | Constitutional indices | Numbers of Hydrogen atoms | |
6 | pilD | Walk and path counts | Conventional bond order ID number | |
7 | IDET | Information indices | Total information content on the distance equality | |
8 | HVcpx | Information indices | graph vertex complexity index | |
9 | TlC1 | Information indices | Total Information Content index | |
10 | ClC0 | Information indices | Complementary Information Content index | |
11 | ATS4m | 2D autocorrelations | B-M autocorrelation of lag 4 (log function) weighted by mass | |
12 | ATS2p | 2D autocorrelations | B-M autocorrelation of lag 2 (log function) weighted by polarizability | |
13 | ATS1li | 2D autocorrelations | B-M autocorrelation of lag 1 (log function) weighted by ionization potential | |
14 | ATS3i | 2D autocorrelations | B-M autocorrelation of lag 3 (log function) weighted by ionization potential | |
15 | ATSC1i | 2D autocorrelations | Centred B-M autocorrelation of lag 1 weighted by ionization potential | |
16 | MATS1i | 2D autocorrelations | Moran autocorrelation of lag 1 weighted by ionization potential | |
17 | GGl10 | 2D autocorrelations | topological charge index of order 10 | |
18 | SpMin3_Bh(m) | Burden eigenvalues | smallest eigenvalue n. 3 of Burden matrix weighted by mass | |
19 | SpMin4_Bh(m) | Burden eigenvalues | smallest eigenvalue n. 4 of Burden matrix weighted by mass | |
20 | P_VSA_m_2 | P_VSA-like descriptors | P_VSA-like on mass, bin 2 | |
21 | P_VSA_e_2 | P_VSA-like descriptors | P_VSA-like on Sanderson electronegativity, bin 2 | |
22 | P_VSA_p_1 | P_VSA-like descriptors | P_VSA-like on polarizability, bin 1 | |
23 | P_VSA_ppp_L | P_VSA-like descriptors | P_VSA-like on potential pharmacophore points, L-lipophilic | |
24 | P_VSA_ppp_ar | P_VSA-like descriptors | P_VSA-like on potential pharmacophore points, ar-aromatic atoms | |
25 | P_VSA_charge_6 | P_VSA-like descriptors | P_VSA-like on partial charges, bin 6 | |
26 | nCbH | Functional group counts | number of unsubstituted benzene C(sp2) | |
27 | CATS2D_03_LL | Pharmacophore descriptors | CATS2D Lipophilic-Lipophilic at lag 03 | |
28 | Qpos | Charge descriptors | total positive charge | |
29 | RPCG | Charge descriptors | relative positive charge | |
30 | MLOGP2 | Molecular properties | squared logP | |
31 | LOGPcons | Molecular properties | Octanol-water partition coeff. (consensus) | |
32 | PDI | Molecular properties | packing density index | |
33 | BLTD48 | Molecular properties | Verhaar Daphnia base-line toxicity from MLOGP (mmol/L) | |
34 | DLS_cons | Drug-like indices | DRAGON consensus drug-like score | |
35 | MDEC-23 | MDE descriptors | molecular distance edge between all secondary and tertiary carbons |
Model composition | R2train | R2test | MAEtrain | MAEtest | MSEtrain | MSEtest |
---|---|---|---|---|---|---|
Model A | 0.9885 | 0.9793 | 9.23 | 10.84 | 186.7 | 333.9 |
Model B | 0.995 | 0.9833 | 5.61 | 8.53 | 81.4 | 270.1 |
Model C | 0.9951 | 0.9789 | 6.01 | 10.45 | 83.2 | 350.1 |
Heterogenousa | 0.9953 | 0.9872 | 5.52 | 7.95 | 77.8 | 209.8 |
Heterovotedb | 0.9953 | 0.9864 | 5.55 | 8.1 | 73.8 | 214.6 |
Homogenousc | 0.9955 | 0.9848 | 5.16 | 7.96 | 79.9 | 245.6 |
Model composition | R2train | R2test | MAEtrain | MAEtest | MSEtrain | MSEtest |
---|---|---|---|---|---|---|
Model A | 0.9885 | 0.9793 | 9.23 | 10.84 | 186.7 | 333.9 |
Model B | 0.995 | 0.9833 | 5.61 | 8.53 | 81.4 | 270.1 |
Model C | 0.9951 | 0.9789 | 6.01 | 10.45 | 83.2 | 350.1 |
Heterogenousa | 0.9953 | 0.9872 | 5.52 | 7.95 | 77.8 | 209.8 |
Heterovotedb | 0.9953 | 0.9864 | 5.55 | 8.1 | 73.8 | 214.6 |
Homogenousc | 0.9955 | 0.9848 | 5.16 | 7.96 | 79.9 | 245.6 |
Type of compound | N | Descriptor | Method | R2 | S | Reference |
---|---|---|---|---|---|---|
Alkanes | 94 | Tls(W, P) | MLR | 0.97 | [ | |
Alkanes | 74 | Tls(5) | MLR | 0.999 | 1.86 | [ |
Alkanes(C2~C7) | 72 | Tls(LOVI’s) | RA | 0.994 | 3.9 | [ |
Furans, thiophenestrahydrofuran | 209 | Tls, electronic, geometrical | RA | 0.969 | 11.2 | [ |
Alkanes, alcohols | 245 | Atom-type E | MLR | 8 | [ | |
Alcohols | 58 | Weighted path related Tls | MRA | 0.978 | 3.64 | [ |
Diverse organic compounds | 298 | Constitutional, topological, geometrical and CPSA(8) | MLR | 0.954 | 16.15 | [ |
Hydrocarbons | 143 | Tls | MLR | 0.9821 | 7.2549 | [ |
Diverse organic compounds (contain N, O, F, Cl, Br and I) | 612 | Constitutional, topological, geometrical and CPSA(8) | MLR | 0.965 | 15.5 | [ |
Diverse organic compounds | 450 | Molecular weight and specific gravity | RBF | 18.78 | [ | |
Single ring, fused rings, halogens OH, COOH, COOR, CON, CN, NH2 and NO2 | 155 | Tls | BMLR | 0.9864 | 9.1 | [ |
Diverse organic compounds | 14216 | Mathematical Selection | ANN | 0.943 | 22 | [ |
Diverse organic compounds | 4550 | Tls, Constitutional, Fingerprints | Composite ML | 0.9953 | 10.0873 | Present work |
Type of compound | N | Descriptor | Method | R2 | S | Reference |
---|---|---|---|---|---|---|
Alkanes | 94 | Tls(W, P) | MLR | 0.97 | [ | |
Alkanes | 74 | Tls(5) | MLR | 0.999 | 1.86 | [ |
Alkanes(C2~C7) | 72 | Tls(LOVI’s) | RA | 0.994 | 3.9 | [ |
Furans, thiophenestrahydrofuran | 209 | Tls, electronic, geometrical | RA | 0.969 | 11.2 | [ |
Alkanes, alcohols | 245 | Atom-type E | MLR | 8 | [ | |
Alcohols | 58 | Weighted path related Tls | MRA | 0.978 | 3.64 | [ |
Diverse organic compounds | 298 | Constitutional, topological, geometrical and CPSA(8) | MLR | 0.954 | 16.15 | [ |
Hydrocarbons | 143 | Tls | MLR | 0.9821 | 7.2549 | [ |
Diverse organic compounds (contain N, O, F, Cl, Br and I) | 612 | Constitutional, topological, geometrical and CPSA(8) | MLR | 0.965 | 15.5 | [ |
Diverse organic compounds | 450 | Molecular weight and specific gravity | RBF | 18.78 | [ | |
Single ring, fused rings, halogens OH, COOH, COOR, CON, CN, NH2 and NO2 | 155 | Tls | BMLR | 0.9864 | 9.1 | [ |
Diverse organic compounds | 14216 | Mathematical Selection | ANN | 0.943 | 22 | [ |
Diverse organic compounds | 4550 | Tls, Constitutional, Fingerprints | Composite ML | 0.9953 | 10.0873 | Present work |
[1] |
Walker, J. J. Chem. Soc. 1894, 65, 193.
doi: 10.1039/CT8946500193 |
[2] |
Joback, K. G.; Reid, R. C. Chem. Eng. Commun. 1987, 57, 230.
|
[3] |
Wiener, H. J. Am. Chem. Soc. 1947, 69, 17.
doi: 10.1021/ja01193a005 |
[4] |
Katritzky, A. R.; Kuanar, M.; Slavov, S.; Hall, C. D.; Karelson, M.; Kahn, I.; Dobchev, D. A. Chem. Rev. 2010, 110, 5714.
doi: 10.1021/cr900238d pmid: 20731377 |
[5] |
Zhu, B.; Wu, R.; Yu, X. Acta Chim. Sinica 2020, 78, 1366. (in Chinese)
doi: 10.6023/A20070306 |
(朱博阳, 吴睿龙, 于曦, 化学学报, 2020, 78, 1366.)
doi: 10.6023/A20070306 |
|
[6] |
Wei, J.; Chu, X.; Sun, X.; Xu, K.; Deng, H.; Chen, J.; Wei, Z.; Lei, M. InfoMat 2019, 1, 338.
doi: 10.1002/inf2.12028 |
[7] |
Song, Z.; Chen, X.; Meng, F.; Cheng, G.; Wang, C.; Sun, Z.; Yin, W. J. Chin. Phys. B 2020, 29, 68.
|
[8] |
Wu, W.; Sun, Q. Scientia Sinica: Physica, Mechanica et Astronomica 2018, 48, 58. (in Chinese)
|
(吴炜, 孙强, 中国科学: 物理学, 力学, 天文学, 2018, 48, 58.)
|
|
[9] |
Liu, Y. D.; Yang, Q.; Li, Y.; Zhang, L.; Luo, S. Z. Chin. J. Org. Chem. 2020, 40, 3812. (in Chinese)
doi: 10.6023/cjoc202006051 |
(刘伊迪, 杨骐, 李遥, 张龙, 罗三中, 有机化学, 2020, 40, 3812.)
doi: 10.6023/cjoc202006051 |
|
[10] |
Fissa, M. R. J. Mol. Graph. Model. 2019, 87, 109.
doi: 10.1016/j.jmgm.2018.11.013 |
[11] |
Goll, E. S.; Jurs, P. C. J. Chem. Inf. Model. 1999, 39, 974.
|
[12] |
Beck, B.; Breindl, A.; Clark, T. J. Chem. Infor. Comp. Sci. 2000, 40, 1046.
|
[13] |
Chalk, A. J.; Beck, B.; Clark, T. J. Chem. Infor. Comp. Sci. 2001, 41, 457.
|
[14] |
Gharagheizi, F.; Mirkhani, S. A.; Ilani-Kashkouli, P.; Mohammadi, A. H.; Ramjugernath, D.; Richon, D. Fluid Phase Equilib. 2013, 354, 250.
doi: 10.1016/j.fluid.2013.06.034 |
[15] |
Yaws, C. L. Yaws' Critical Property Data for Chemical Engineers and Chemists, 2012, http://app.knovel.com/hotlink/toc/id:kpYCPDCECD/yaws-critical-property/yaws-critical-property
|
[16] |
PubChem-https://pubchem.ncbi.nlm.nih.gov/
|
[17] |
Mauri, A. Ecotoxicological QSARs, Methods in Pharmacology and Toxicology, Roy, K., New York, 2020, pp. 801-820.
|
[18] |
Kubic, W. L.; Jenkins, R. W.; Moore, C. M.; Semelsberger, T. A.; & Sutton, A. D. Ind. Eng. Chem. Res. 2017, 56, 12236.
doi: 10.1021/acs.iecr.7b02753 |
[19] |
Kier, L. B.; Hall, L. H. In Molecular ConnectiVity in Chemistry and Drug Research, New York, 1976, pp. 27-39.
|
[20] |
Dash, M.; Liu, H. Intell. Data Anal., 1997, 1, 131.
doi: 10.3233/IDA-1997-1302 |
[21] |
Roy, P. P.; Leonard, J. T.; Roy, K. Chemometr. Intell. Lab. Syst. 2008, 90, 31.
doi: 10.1016/j.chemolab.2007.07.004 |
[22] |
MacKay, J. C. Neural Comput. 1992, 4, 415
doi: 10.1162/neco.1992.4.3.415 |
[23] |
Zhou, Z. H. Ensemble Methods: Foundations and Algorithms, Chapman and Hall/CRC, 2012, p. 129
|
[24] |
Zhou, L.; Wang, B.; Jiang, J.; Pan, Y.; & Wang, Q. Chemometr. Intell. Lab. Syst. 2017, 167, 190.
doi: 10.1016/j.chemolab.2017.06.009 |
[25] |
Robert, T. J. R. Stat. Soc. Ser. A 1996, 58, 267.
|
[26] |
Sheela, K.; Deepa, S. N. Math. Probl. Eng. 2013, 2013, 11.
|
[27] |
Eriksson, L.; Jaworska, J.; Worth, A. P.; Cronin, M. T. D.; McDowell, R. M.; Gramatica, P. Environ. Health Perspect. 2003, 111, 1361.
doi: 10.1289/ehp.5758 |
[28] |
Needham, D. E.; Wei, I. C.; Seybold, P. G. J. Am. Chem. Soc. 1988, 110, 4186.
doi: 10.1021/ja00221a015 |
[29] |
Balaban, A. T.; Ciubotariu, D.; Medeleanu, M. J. Chem. Infor. Comp. Sci. 1991, 313, 517.
|
[30] |
Stanton, D. T. J. Chem. Infor. Comp. Sci. 2000, 40, 81.
|
[31] |
Hall, L. H.; Kier, L. B. J. Chem. Infor. Comp. Sci. 1995, 35, 1039.
|
[32] |
Randić, M.; Balaban, A. T.; Basak, S. J. Chem. Infor. Comp. Sci. 2001, 41, 593.
|
[33] |
Katritzky, A. R.; Mu, L.; Lobanov, V. S.; Karelson, M. J. Phys. Chem. 1996, 100, 10400.
doi: 10.1021/jp953224q |
[34] |
Zhou, C. Y.; Nie, C. M.; Li, S.; Li, Z. H. J. Comput. Chem. 2007, 28, 2413.
doi: 10.1002/jcc.20540 |
[35] |
Katritzky, A. R.; Lobanov, V. S.; Karelson, M. J. Chem. Infor. Comp. Sci. 1998, 38, 28.
|
[36] |
Varamesh, A.; Hemmati-Sarapardeh, A.; Dabir, B.; Mohammadi, A. H. J. Mol. Liq. 2017, 242, 59.
doi: 10.1016/j.molliq.2017.06.039 |
[37] |
Sola, D.; Ferri, A.; Banchero, M.; Manna, L.; Sicardi, S. Fluid Phase Equilib. 2008, 263, 33.
doi: 10.1016/j.fluid.2007.09.022 |
[1] | Xingyi Qi, Yaofeng Hu, Ruoyu Wang, Yaqing Yang, Yufei Zhao. Recent Advance of Machine Learning in Selecting New Materials [J]. Acta Chimica Sinica, 2023, 81(2): 158-174. |
[2] | Yizhi Han, Jianhui Lan, Xue Liu, Weiqun Shi. Advances in Molecular Dynamics Studies of Molten Salts Based on Machine Learning [J]. Acta Chimica Sinica, 2023, 81(11): 1663-1672. |
[3] | Min Cheng, Shihui Wang, Lei Luo, Li Zhou, Kexin Bi, Yiyang Dai, Xu Ji. Large-Scale Computational Screening of Metal-Organic Framework Membranes for Ethane/Ethylene Separation [J]. Acta Chimica Sinica, 2022, 80(9): 1277-1288. |
[4] | Shihui Wang, Xiaoyu Xue, Min Cheng, Shaochen Chen, Chong Liu, Li Zhou, Kexin Bi, Xu Ji. High-Throughput Computational Screening of Metal-Organic Frameworks for CH4/H2 Separation by Synergizing Machine Learning and Molecular Simulation [J]. Acta Chimica Sinica, 2022, 80(5): 614-624. |
[5] | Cai Chengzhi, Li Lifeng, Deng Xiaomei, Li Shuhua, Liang Hong, Qiao Zhiwei. Machine Learning and High-throughput Computational Screening of Metal-organic Framework for Separation of Methane/ethane/propane [J]. Acta Chimica Sinica, 2020, 78(5): 427-436. |
[6] | Zhu Boyang, Wu Ruilong, Yu Xi. Artificial Intelligence for Contemporary Chemistry Research [J]. Acta Chimica Sinica, 2020, 78(12): 1366-1382. |
[7] | Liu Zhilu, Li Wei, Liu Hao, Zhuang Xudong, Li Song. Research Progress of High-throughput Computational Screening of Metal-Organic Frameworks [J]. Acta Chim. Sinica, 2019, 77(4): 323-339. |
[8] | YU Xin-Liang. Prediction of Q-e Parameters of Monomers in Free-radical Copolymerizations [J]. Acta Chimica Sinica, 2010, 68(22): 2264-2272. |
[9] | . Quantitative Structure-Activity/Property Relationships for Chiral Hydroxy Acids and Amino Acids [J]. Acta Chimica Sinica, 2009, 67(2): 145-150. |
[10] | . Quantitative Structure-property Relationship Study on N—H Bond Dissociation Energy of Arylamines [J]. Acta Chimica Sinica, 2009, 67(10): 1109-1115. |
[11] | LIN Sheng-Ling1,2, XU Shao-Fen2, WANG Jun-De*1, XIE Chun-Sheng2, YUAN Ai-Hua2, HAN Guang-Fan2, ZHANG Lin, ZHANG Li-Ming,LI Yan,YAN Zhi. Study on Photo-Electro Catalytic Activity of Perovskite Type Oxides LaxSr1-xNi1-yCoyO3 [J]. Acta Chimica Sinica, 2005, 63(5): 385-390. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||