Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (2): 158-174.DOI: 10.6023/A22110446 Previous Articles     Next Articles

Review

机器学习在新材料筛选方面的应用进展

戚兴怡, 胡耀峰, 王若愚, 杨雅清, 赵宇飞*()   

  1. 北京化工大学化学学院 化工资源有效利用国家重点实验室 北京 100029
  • 投稿日期:2022-11-01 发布日期:2022-12-23
  • 通讯作者: 赵宇飞
  • 作者简介:

    戚兴怡, 北京化工大学化学学院化学专业在读研究生. 2022年6月于北京化工大学化学学院应用化学专业获得学士学位.

    胡耀峰, 北京化工大学化学学院化学专业在读本科生.

    赵宇飞, 北京化工大学化学学院教授, 博士生导师. 入选中国科协“青年人才托举工程”计划, 2019年度国家自然科学基金优秀青年科学基金获得者. 工作围绕水滑石基二维插层材料的可控合成及精细结构表征, 面向高值精细化学品的光/电催化合成. 近年来以第一/通讯作者在Chem. Soc. Rev.、J. Am. Chem. Soc.、Angew. Chem.、Adv. Mater.、Chem、Joule、Ind. Eng. Chem. Res.等期刊上发表SCI收录论文30余篇; 累计SCI他引4500余次; 5篇入选ESI高被引论文, 已授权国家发明专利19项.

    同等贡献
  • 基金资助:
    国家自然科学基金(21922801); 国家自然科学基金(22090032); 国家自然科学基金(22090030); 北京自然科学基金(2202036)

Recent Advance of Machine Learning in Selecting New Materials

Xingyi Qi, Yaofeng Hu, Ruoyu Wang, Yaqing Yang, Yufei Zhao()   

  1. State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029
  • Received:2022-11-01 Published:2022-12-23
  • Contact: Yufei Zhao
  • About author:
    Contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(21922801); National Natural Science Foundation of China(22090032); National Natural Science Foundation of China(22090030); Natural Science Foundation of Beijing(2202036)

The new material industry is the foundation of technological change in many related fields, and also the forerunner of the development of new energy, aerospace, electronic information and other high-tech industries. Traditional means cannot meet the development needs of modern society because of disadvantages such as high cost, low efficiency and long commercial cycle. In recent years, with the application of big data combined with artificial intelligence in a deeper degree, data-driven machine learning has made great progress in the design, screening and performance prediction of new materials, which has greatly promoted the development and application of new materials. In this review, the basic process of machine learning, the algorithms commonly used in materials science and the relevant materials database are summarized. This review focuses on the application of machine learning in different functions, as well as the performance prediction in the fields of catalyst materials, lithium-ion batteries, semiconductor materials and alloy materials, presenting the latest progress in materials development. Finally, machine learning in the application of new materials are analyzed and prospected.

Key words: machine learning, materials science, material genome, high throughput computing