Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (7): 857-868.DOI: 10.6023/A23040149 Previous Articles
Review
马超凡a,b, 徐伟a,b, 刘巍a,b, 徐昌晖a,b, 沙菁㛃a,b,*()
投稿日期:
2023-04-20
发布日期:
2023-05-31
作者简介:
马超凡, 男, 东南大学机械工程学院博士研究生. 主要从事生物纳米孔蛋白质检测与构象分析的研究. |
沙菁㛃, 女, 东南大学机械工程学院设计工程系, 教授, 博士生导师. 主要研究方向为微纳流体系统、微纳传感器设计. 先后主持或完成包括4项国家自然科学基金(其中一项优秀结题)、参与1项973计划、1项国家自然科学基金重点项目. 近几年, 在JACS、ACS Nano、Small、Nanoscale、Analytical Chemistry、ACS Sensors、Nanotechnology、Appl. Phys. Lett.等微纳领域权威国际期刊发表SCI论文50余篇(含JCR一区、二区论文近50篇, 影响因子超10.0论文6篇). 申请发明专利18项, 已经获得授权13项. 中国机械工程学会高级会员、ASME会员、长期担任《Lab on a Chip》、《Nanotechnology》、《BIOTECHNOLOGY AND BIOENGINEERING》、《中国科学》等期刊的审稿人. |
基金资助:
Chaofan Maa,b, Wei Xua,b, Wei Liua,b, Changhui Xua,b, Jingjie Shaa,b()
Received:
2023-04-20
Published:
2023-05-31
Contact:
*E-mail: Supported by:
Share
Chaofan Ma, Wei Xu, Wei Liu, Changhui Xu, Jingjie Sha. Proactive Manipulation Techniques for Protein Transport at Confined Nanoscale[J]. Acta Chimica Sinica, 2023, 81(7): 857-868.
[1] |
Thomas A.; Teicher B. A.; Hassan R. Lancet Oncol. 2016, 17, e254.
|
[2] |
Carter P. J.; Lazar G. A. Nat. Rev. Drug Discov. 2018, 17, 197.
doi: 10.1038/nrd.2017.227 |
[3] |
Strohl W. R. Protein Cell 2018, 9, 86.
doi: 10.1007/s13238-017-0457-8 |
[4] |
Rodrigues R. C.; Berenguer-Murcia Á.; Carballares D.; Morellon- Sterling R.; Fernandez-Lafuente R. Biotechnol. Adv. 2021, 52, 107821.
doi: 10.1016/j.biotechadv.2021.107821 |
[5] |
Rodrigues R. C.; Ortiz C.; Berenguer-Murcia Á.; Torres R.; Fernández-Lafuente R. Chem. Soc. Rev. 2013, 42, 6290.
doi: 10.1039/C2CS35231A |
[6] |
Basolo A.; Matrone A.; Elisei R.; Santini F. Semin. Cancer Biol. 2022, 79, 197.
doi: 10.1016/j.semcancer.2020.12.008 |
[7] |
Rizo J. Annu. Rev. Biophys. 2022, 51, 377.
doi: 10.1146/biophys.2022.51.issue-1 |
[8] |
Hetz C.; Soto C. CMLS, Cell. Mol. Life Sci. 2003, 60, 133.
doi: 10.1007/s000180300009 |
[9] |
Hofmann C.; Katus H. A.; Doroudgar S. Circulation 2019, 139, 2085.
doi: 10.1161/CIRCULATIONAHA.118.037417 |
[10] |
Zhang Y.; Guo Y.; Xianyu Y.; Chen W.; Zhao Y.; Jiang X. Adv. Mater. 2013, 25, 3802.
doi: 10.1002/adma.v25.28 |
[11] |
Cohen L.; Walt D. R. Chem. Rev. 2019, 119, 293.
doi: 10.1021/acs.chemrev.8b00257 |
[12] |
Vanova V.; Mitrevska K.; Milosavljevic V.; Hynek D.; Richtera L.; Adam V. Biosens. Bioelectron. 2021, 180, 113087.
doi: 10.1016/j.bios.2021.113087 |
[13] |
Zhan K.; Li Z.; Chen J.; Hou Y.; Zhang J.; Sun R.; Bu Z.; Wang L.; Wang M.; Chen X.; Hou X. Nano Today 2020, 33, 100868.
doi: 10.1016/j.nantod.2020.100868 |
[14] |
Lu H.; Giordano F.; Ning Z. Genomics, Proteomics Bioinf. 2016, 14, 265.
|
[15] |
Wang Y.; Zhao Y.; Bollas A.; Wang Y.; Au K. F. Nat. Biotechnol. 2021, 39, 1348.
doi: 10.1038/s41587-021-01108-x |
[16] |
Sha J.; Xu B.; Chen Y.; Yang Y. Acta Chim. Sinica 2017, 75, 1121. (in Chinese)
doi: 10.6023/A17060271 |
(沙菁㛃, 徐冰, 陈云飞, 杨颜菁, 化学学报, 2017, 75, 1121.)
|
|
[17] |
Fu F.; Zhang Z.; Sun Q.; Xu B.; Sha J. Acta Chim. Sinica 2019, 77, 287. (in Chinese)
doi: 10.6023/A18110472 |
(傅方舟, 张志诚, 孙倩怡, 徐冰, 沙菁㛃, 化学学报, 2019, 77, 287.)
|
|
[18] |
Wang Y.; Yu X.; Liu Y.; Xie X.; Cheng X.; Huang S.; Wang Z. Acta Chim. Sinica 2014, 72, 378. (in Chinese)
doi: 10.6023/A13121208 |
(王跃, 余旭丰, 刘芸芸, 谢骁, 程秀兰, 黄少铭, 王志民, 化学学报, 2014, 72, 378.)
|
|
[19] |
Shendure J.; Balasubramanian S.; Church G. M.; Gilbert W.; Rogers J.; Schloss J. A.; Waterston R. H. Nature 2017, 550, 345.
doi: 10.1038/nature24286 |
[20] |
Deamer D.; Akeson M.; Branton D. Nat. Biotechnol. 2016, 34, 518.
doi: 10.1038/nbt.3423 |
[21] |
Lu S.; Wu X.; Li M.; Ying Y.; Long Y. View 2020, 1, 20200006.
doi: 10.1002/viw2.v1.4 |
[22] |
Hu Z.; Huo M.; Ying Y.; Long Y. Angew. Chem., Int. Ed. 2021, 60, 14738.
doi: 10.1002/anie.v60.27 |
[23] |
Ying Y.-L.; Hu Z.-L.; Zhang S.; Qing Y.; Fragasso A.; Maglia G.; Meller A.; Bayley H.; Dekker C.; Long Y.-T. Nat. Nanotechnol. 2022, 17, 1136.
doi: 10.1038/s41565-022-01193-2 |
[24] |
Nehra A.; Ahlawat S.; Singh K. P. Sens. Actuators, B 2019, 284, 595.
doi: 10.1016/j.snb.2018.12.143 |
[25] |
Ying Y.-L.; Zhang J.; Gao R.; Long Y.-T. Angew. Chem., Int. Ed. 2013, 52, 13154.
doi: 10.1002/anie.201303529 |
[26] |
Zhan K.; Li Z.; Chen J.; Hou Y.; Zhang J.; Sun R.; Bu Z.; Wang L.; Wang M.; Chen X.; Hou X. Nano Today 2020, 33, 100868.
doi: 10.1016/j.nantod.2020.100868 |
[27] |
Hu R.; Rodrigues J. V.; Waduge P.; Yamazaki H.; Cressiot B.; Chishti Y.; Makowski L.; Yu D.; Shakhnovich E.; Zhao Q.; Wanunu M. ACS Nano 2018, 12, 4494.
doi: 10.1021/acsnano.8b00734 |
[28] |
Tripathi P.; Benabbas A.; Mehrafrooz B.; Yamazaki H.; Aksimentiev A.; Champion P. M.; Wanunu M. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e2016262118.
|
[29] |
Waduge P.; Hu R.; Bandarkar P.; Yamazaki H.; Cressiot B.; Zhao Q.; Whitford P. C.; Wanunu M. ACS Nano 2017, 11, 5706.
doi: 10.1021/acsnano.7b01212 |
[30] |
Si W.; Aksimentiev A. ACS Nano 2017, 11, 7091.
doi: 10.1021/acsnano.7b02718 |
[31] |
Guo B.-Y.; Zeng T.; Wu H.-C. Sci. Bull. 2015, 60, 287.
doi: 10.1007/s11434-014-0707-6 |
[32] |
Cressiot B.; Ouldali H.; Pastoriza-Gallego M.; Bacri L.; Van der Goot F. G.; Pelta J. ACS Sens. 2019, 4, 530.
doi: 10.1021/acssensors.8b01636 |
[33] |
Wang Y.; Gu L.-Q.; Tian K. Nanoscale 2018, 10, 13857.
doi: 10.1039/C8NR04255A |
[34] |
Yan S.; Wang L.; Wang Y.; Cao Z.; Zhang S.; Du X.; Fan P.; Zhang P.; Chen H.; Huang S. Angew. Chem., Int. Ed. 2022, 61, e202116482.
|
[35] |
Li F.; Fahie M. A.; Gilliam K. M.; Pham R.; Chen M. Nat. Commun. 2022, 13, 3541.
doi: 10.1038/s41467-022-31215-5 |
[36] |
Versloot R. C. A.; Lucas F. L. R.; Yakovlieva L.; Tadema M. J.; Zhang Y.; Wood T. M.; Martin N. I.; Marrink S. J.; Walvoort M. T. C.; Maglia G. Nano Lett. 2022, 22, 5357.
doi: 10.1021/acs.nanolett.2c01338 |
[37] |
Wang J.; Prajapati J. D.; Gao F.; Ying Y.-L.; Kleinekathöfer U.; Winterhalter M.; Long Y.-T. J. Am. Chem. Soc. 2022, 144, 15072.
doi: 10.1021/jacs.2c03923 |
[38] |
Hu Z.; Huo M.; Ying Y.; Long Y. Angew. Chem., Int. Ed. 2021, 60, 14738.
doi: 10.1002/anie.v60.27 |
[39] |
Yin Y.-D.; Zhang L.; Leng X.-Z.; Gu Z.-Y. TrAC, Trends Anal. Chem. 2020, 133, 116091.
|
[40] |
Ying Y.-L.; Long Y.-T. J. Am. Chem. Soc. 2019, 141, 15720.
doi: 10.1021/jacs.8b11970 |
[41] |
Lucas F. L. R.; Versloot R. C. A.; Yakovlieva L.; Walvoort M. T. C.; Maglia G. Nat. Commun. 2021, 12, 5795.
doi: 10.1038/s41467-021-26046-9 |
[42] |
Afshar Bakshloo M.; Kasianowicz J. J.; Pastoriza-Gallego M.; Mathé J.; Daniel R.; Piguet F.; Oukhaled A. J. Am. Chem. Soc. 2022, 144, 2716.
doi: 10.1021/jacs.1c11758 |
[43] |
Sheng Y.; Zhou K.; Liu L.; Wu H. Angew. Chem. 2022, 134, e202200866.
|
[44] |
Ouldali H.; Sarthak K.; Ensslen T.; Piguet F.; Manivet P.; Pelta J.; Behrends J. C.; Aksimentiev A.; Oukhaled A. Nat. Biotechnol. 2020, 38, 176.
doi: 10.1038/s41587-019-0345-2 |
[45] |
Brinkerhoff H.; Kang A. S. W.; Liu J.; Aksimentiev A.; Dekker C. Science 2021, 374, 1509.
doi: 10.1126/science.abl4381 |
[46] |
Xue L.; Yamazaki H.; Ren R.; Wanunu M.; Ivanov A. P.; Edel J. B. Nat. Rev. Mater. 2020, 5, 931.
doi: 10.1038/s41578-020-0229-6 |
[47] |
Eggenberger O. M.; Ying C.; Mayer M. Nanoscale 2019, 11, 19636.
doi: 10.1039/C9NR05367K |
[48] |
Deng T.; Li M.; Wang Y.; Liu Z. Sci. Bull. 2015, 60, 304.
doi: 10.1007/s11434-014-0705-8 |
[49] |
Miles B. N.; Ivanov A. P.; Wilson K. A.; Doğan F.; Japrung D.; Edel J. B. Chem. Soc. Rev. 2013, 42, 15.
doi: 10.1039/C2CS35286A |
[50] |
Sha J.; Si W.; Xu W.; Zou Y.; Chen Y. Sci. China: Technol. Sci. 2015, 58, 803.
|
[51] |
Chen W.; Liu G.-C.; Ouyang J.; Gao M.-J.; Liu B.; Zhao Y.-D. Sci. China: Chem. 2017, 60, 721.
|
[52] |
Arjmandi-Tash H.; Belyaeva L. A.; Schneider G. F. Chem. Soc. Rev. 2016, 45, 476.
doi: 10.1039/C5CS00512D |
[53] |
Qiu H.; Zhou W.; Guo W. ACS Nano 2021, 15, 18848.
doi: 10.1021/acsnano.1c07960 |
[54] |
Su S.; Wang X.; Xue J. Mater. Horiz. 2021, 8, 1390.
doi: 10.1039/D0MH01412E |
[55] |
Dai B.; Zhou R.; Ping J.; Ying Y.; Xie L. TrAC, Trends Anal. Chem. 2022, 154, 116658.
doi: 10.1016/j.trac.2022.116658 |
[56] |
Hu R.; Rodrigues J. V.; Waduge P.; Yamazaki H.; Cressiot B.; Chishti Y.; Makowski L.; Yu D.; Shakhnovich E.; Zhao Q.; Wanunu M. ACS Nano 2018, 12, 4494.
doi: 10.1021/acsnano.8b00734 |
[57] |
Liu Y.; Pan T.; Wang K.; Wang Y.; Yan S.; Wang L.; Zhang S.; Du X.; Jia W.; Zhang P.; Chen H.-Y.; Huang S. Angew. Chem., Int. Ed. 2021, 60, 23863.
doi: 10.1002/anie.v60.44 |
[58] |
Freedman K. J.; Haq S. R.; Edel J. B.; Jemth P.; Kim M. J. Sci. Rep. 2013, 3, 1638.
doi: 10.1038/srep01638 |
[59] |
Bandara Y. M. N. D. Y.; Farajpour K. J.; Freedman J. B. J. Am. Chem. Soc. 2022, 144, 3063.
doi: 10.1021/jacs.1c11540 |
[60] |
Qiao L.; Slater G. W. J. Chem. Phys. 2020, 152, 144902.
doi: 10.1063/5.0002044 |
[61] |
Xue X.-G.; Zhao L.; Lu Z.-Y.; Li Z.-S. Phys. Lett. A 2012, 376, 290.
doi: 10.1016/j.physleta.2011.12.014 |
[62] |
Polson J. M.; Hassanabad M. F.; McCaffrey A. J. Chem. Phys. 2013, 138, 024906.
doi: 10.1063/1.4774118 |
[63] |
Bucataru I. C.; Dragomir I.; Asandei A.; Pantazica A.-M.; Ghionescu A.; Branza-Nichita N.; Park Y.; Luchian T. Biosensors 2022, 12, 596.
doi: 10.3390/bios12080596 |
[64] |
Pandey D.; Bhattacharyya S. Appl. Math. Model. 2022, 111, 471.
doi: 10.1016/j.apm.2022.06.038 |
[65] |
Saharia J.;Bandara, Y. M. N. D. Y.; Karawdeniya, B. I.; Hammond, C.; Alexandrakis, G.; Kim, M. J. RSC Adv. 2021, 11, 24398.
doi: 10.1039/D1RA03903B |
[66] |
Velasco A. E.; Friedman S. G.; Pevarnik M.; Siwy Z. S.; Taborek P. Phys. Rev. E 2012, 86, 025302.
doi: 10.1103/PhysRevE.86.025302 |
[67] |
Dabhade A.; Chauhan A.; Chaudhury S. ChemPhysChem 2022, 24, e202200666.
|
[68] |
Fahie M. A.; Chen M. J. Phys. Chem. B 2015, 119, 10198.
doi: 10.1021/acs.jpcb.5b06435 |
[69] |
Liu Y.; Deng Y.; Yang Y.; Qu Y.; Zhang C.; Li Y.-Q.; Zhao M.; Li W. Nanoscale Adv. 2021, 3, 5941.
doi: 10.1039/D1NA00476J |
[70] |
Chinappi M.; Yamaji M.; Kawano R.; Cecconi F. ACS Nano 2020, 14, 15816.
doi: 10.1021/acsnano.0c06981 |
[71] |
Asandei A.; Schiopu I.; Chinappi M.; Seo C. H.; Park Y.; Luchian T. ACS Appl. Mater. Interfaces 2016, 8, 13166.
doi: 10.1021/acsami.6b03697 |
[72] |
Firnkes M.; Pedone D.; Knezevic J.; Döblinger M.; Rant U. Nano Lett. 2010, 10, 2162.
doi: 10.1021/nl100861c |
[73] |
Niu H.; Li M.-Y.; Ying Y.-L.; Long Y.-T. Chem. Sci. 2022, 13, 2456.
doi: 10.1039/D1SC06459B |
[74] |
Li J.; Hu R.; Li X.; Tong X.; Yu D.; Zhao Q. Electrophoresis 2017, 38, 1130.
doi: 10.1002/elps.v38.8 |
[75] |
Saharia J.;Bandara, Y. M. N. D. Y.; Kim, M. J. Electrophoresis 2022, 43, 785.
doi: 10.1002/elps.v43.5-6 |
[76] |
Zhang Y.; Zhao J.; Si W.; Kan Y.; Xu Z.; Sha J.; Chen Y. Small Methods 2020, 4, 1900893.
doi: 10.1002/smtd.v4.11 |
[77] |
Huang G.; Willems K.; Soskine M.; Wloka C.; Maglia G. Nat. Commun. 2017, 8, 935.
doi: 10.1038/s41467-017-01006-4 |
[78] |
Ouldali H.; Sarthak K.; Ensslen T.; Piguet F.; Manivet P.; Pelta J.; Behrends J. C.; Aksimentiev A.; Oukhaled A. Nat. Biotechnol. 2020, 38, 176.
doi: 10.1038/s41587-019-0345-2 |
[79] |
Wang X.; Thomas T.-M.; Ren R.; Zhou Y.; Zhang P.; Li J.; Cai S.; Liu K.; Ivanov A. P.; Herrmann A.; Edel J. B. J. Am. Chem. Soc. 2023, 145, 6371.
doi: 10.1021/jacs.2c13465 |
[80] |
Sze J. Y. Y.; Ivanov A. P.; Cass A. E. G.; Edel J. B. Nat. Commun. 2017, 8, 1552.
doi: 10.1038/s41467-017-01584-3 |
[81] |
Zhang X.; Luo D.; Zheng Y.-W.; Li X.-Q.; Song J.; Zhao W.-W.; Chen H.-Y.; Xu J.-J. ACS Nano 2022, 16, 15108.
doi: 10.1021/acsnano.2c06303 |
[82] |
Wang Z.; Hu R.; Zhu R.; Lu W.; Wei G.; Zhao J.; Gu Z.; Zhao Q. Small Methods 2022, 6, 2200743.
doi: 10.1002/smtd.v6.11 |
[83] |
Lu B.; Hoogerheide D. P.; Zhao Q.; Zhang H.; Tang Z.; Yu D.; Golovchenko J. A. Nano Lett. 2013, 13, 3048.
doi: 10.1021/nl402052v |
[84] |
Leong I. W.; Tsutsui M.; Yokota K.; Taniguchi M. Anal. Chem. 2021, 93, 16700.
doi: 10.1021/acs.analchem.1c04342 |
[85] |
Asandei A.; Di Muccio G.; Schiopu I.; Mereuta L.; Dragomir I. S.; Chinappi M.; Luchian T. Small Methods 2020, 4, 1900595.
doi: 10.1002/smtd.v4.11 |
[86] |
Bell N. A. W.; Keyser U. F. J. Am. Chem. Soc. 2015, 137, 2035.
doi: 10.1021/ja512521w |
[87] |
Liu W.; Yang Z.-L.; Yang C.-N.; Ying Y.-L.; Long Y.-T. Chem. Sci. 2022, 13, 4109.
doi: 10.1039/D1SC06837G |
[88] |
Hwang H.-J.; Kim J.-S.; Lee J.; Min J. S.; Jeong K.-B.; Kim E.; Lee M.-K.; Chi S.-W. Anal. Chem. 2022, 94, 7449.
doi: 10.1021/acs.analchem.1c04840 |
[89] |
Wei R.; Gatterdam V.; Wieneke R.; Tampé R.; Rant U. Nat. Nanotechnol. 2012, 7, 257.
doi: 10.1038/nnano.2012.24 |
[90] |
Yusko E. C.; Bruhn B. R.; Eggenberger O. M.; Houghtaling J.; Rollings R. C.; Walsh N. C.; Nandivada S.; Pindrus M.; Hall A. R.; Sept D.; Li J.; Kalonia D. S.; Mayer M. Nat. Nanotechnol. 2017, 12, 360.
doi: 10.1038/nnano.2016.267 |
[91] |
Houghtaling J.; Ying C.; Eggenberger O. M.; Fennouri A.; Nandivada S.; Acharjee M.; Li J.; Hall A. R.; Mayer M. ACS Nano 2019, 13, 5231.
doi: 10.1021/acsnano.8b09555 |
[92] |
Lynch C. I.; Klesse G.; Rao S.; Tucker S. J.; Sansom M. S. P. ACS Nano 2021, 15, 19098.
doi: 10.1021/acsnano.1c06443 |
[93] |
Trick J. L.; Wallace E. J.; Bayley H.; Sansom M. S. P. ACS Nano 2014, 8, 11268.
doi: 10.1021/nn503930p |
[94] |
Powell M. R.; Cleary L.; Davenport M.; Shea K. J.; Siwy Z. S. Nat. Nanotechnol. 2011, 6, 798.
doi: 10.1038/nnano.2011.189 |
[95] |
Klesse G.; Tucker S. J.; Sansom M. S. P. ACS Nano 2020, 14, 10480.
doi: 10.1021/acsnano.0c04387 |
[96] |
Lucas F. L. R.; Sarthak K.; Lenting E. M.; Coltan D.; van der Heide N. J.; Versloot R. C. A.; Aksimentiev A.; Maglia G. ACS Nano 2021, 15, 9600.
doi: 10.1021/acsnano.0c09958 |
[97] |
Si W.; Yang H.; Wu G.; Zhang Y.; Sha J. Nanoscale 2021, 13, 15352.
doi: 10.1039/D1NR04492C |
[98] |
Versloot R. C. A.; Lucas F. L. R.; Yakovlieva L.; Tadema M. J.; Zhang Y.; Wood T. M.; Martin N. I.; Marrink S. J.; Walvoort M. T. C.; Maglia G. Nano Lett. 2022, 22, 5357.
doi: 10.1021/acs.nanolett.2c01338 |
[99] |
Li M.-Y.; Wang Y.-Q.; Ying Y.-L.; Long Y.-T. Chem. Sci. 2019, 10, 10400.
doi: 10.1039/C9SC03163D |
[100] |
Willems K.; Ruić D.; Biesemans A.; Galenkamp N. S.; Van Dorpe P.; Maglia G. ACS Nano 2019, 13, 9980.
doi: 10.1021/acsnano.8b09137 |
[101] |
Liu S.-C.; Ying Y.-L.; Li W.-H.; Wan Y.-J.; Long Y.-T. Chem. Sci. 2021, 12, 3282.
doi: 10.1039/D0SC06106A |
[102] |
Schmid S.; Stömmer P.; Dietz H.; Dekker C. Nat. Nanotechnol. 2021, 16, 1244.
doi: 10.1038/s41565-021-00958-5 |
[103] |
Wen C.; Bertosin E.; Shi X.; Dekker C.; Schmid S. Nano Lett. 2022, 23, 788.
doi: 10.1021/acs.nanolett.2c03569 |
[104] |
Pérez-Mitta G.; Burr L.; Tuninetti J. S.; Trautmann C.; Toimil-Molares M. E.; Azzaroni O. Nanoscale 2016, 8, 1470.
doi: 10.1039/C5NR08190D |
[105] |
Spiering A.; Getfert S.; Sischka A.; Reimann P.; Anselmetti D. Nano Lett. 2011, 11, 2978.
doi: 10.1021/nl201541y |
[106] |
Wu Y.; Chuah K.; Gooding J. J. Biosens. Bioelectron. 2020, 165, 112434.
doi: 10.1016/j.bios.2020.112434 |
[107] |
Shang J.; Li Z.; Liu L.; Xi D.; Wang H. ACS Sens. 2018, 3, 512.
doi: 10.1021/acssensors.7b00954 |
[108] |
Hu R.; Lu W.; Wei G.; Nan H.; Li J.; Zhao Q. Adv. Mater. Technol. 2022, 7, 2200018.
doi: 10.1002/admt.v7.12 |
[1] | Xue Ni, Kaili Xin, Zhengli Hu, Cuiling Jiang, Yongjing Wan, Yi-Lun Ying, Yi-Tao Long. A Time-Series Signal Classification Algorithm and Its Application to Nanopore Ionic Current Signal Identification★ [J]. Acta Chimica Sinica, 2023, 81(8): 912-919. |
[2] | Fu Fangzhou, Zhang Zhicheng, Sun Qianyi, Xu Bing, Sha Jingjie. Label-free Detection of PD-1 Antibody and Antigen Immunoreaction Using Nano-Sensors [J]. Acta Chim. Sinica, 2019, 77(3): 287-292. |
[3] | Li, Mengyin, Ying, Yilun, Long, Yi-Tao. Unveiling the Synergistic Effect from Key Sensing Regions in Aerolysin-Based Single Oligonucleotide Detection [J]. Acta Chimica Sinica, 2019, 77(10): 984-988. |
[4] | Niu, Hongyan, Hu, Zhengli, Ying, Yilun, Long, Yi-Tao. Detection of Single c-di-AMP by an Aerolysin Nanopore [J]. Acta Chimica Sinica, 2019, 77(10): 989-992. |
[5] | Lin Yao, Ying Yilun, Gao Rui, Wang Huifeng, Long Yitao. Analysis of Single-entity Anisotropy with a Solid-state Nanopore [J]. Acta Chim. Sinica, 2017, 75(7): 675-678. |
[6] | Sha Jingjie, Xu Bing, Chen Yunfei, Yang Yanjing. Experimental Research of Protein Translocation Using Solid-state Nanopore [J]. Acta Chim. Sinica, 2017, 75(11): 1121-1125. |
[7] | Hu Zhengli, Du Jihui, Ying Yilun, Peng Yueyi, Cao Chan, Long Yi-Tao. Single-Molecule Analysis of Colorectal Cancer-associated MicroRNAs via a Biological Nanopore [J]. Acta Chim. Sinica, 2017, 75(11): 1087-1090. |
[8] | Cao Chan, Liao Dongfang, Ying Yilun, Long Yitao. Detection of Single Oligonucleotide by an Aerolysin Nanopore [J]. Acta Chim. Sinica, 2016, 74(9): 734-737. |
[9] | Wang Yue, Yu Xufeng, Liu Yunyun, Xie Xiao, Cheng Xiulan, Huang Shaoming, Wang Zhimin. Fabrication of Graphene Nanopores and a Preliminary Study on λ-DNA Translocation [J]. Acta Chimica Sinica, 2014, 72(3): 378-381. |
[10] | Ying Yilun, Zhang Xing, Liu Yu, Xue Mengzhu, Li Honglin, Long Yitao. Single Molecule Study of the Weak Biological Interactions Between P53 and DNA [J]. Acta Chimica Sinica, 2013, 71(01): 44-50. |
[11] | YU QIQUAN;JIN YUN;XU MINGTING. The steady-state and unsteady-state kinetics of deep oxidation of propanol over Pt/Al2O3 catalyst [J]. Acta Chimica Sinica, 1990, 48(6): 523-527. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||