Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (10): 1438-1446.DOI: 10.6023/A23050246 Previous Articles Next Articles
Special Issue: 庆祝《化学学报》创刊90周年合辑
Review
投稿日期:
2023-05-24
发布日期:
2023-07-03
通讯作者:
朱云卿, 杜建忠
作者简介:
溥旭, 同济大学材料科学与工程学院高分子材料系2021级硕士研究生, 研究方向为基于可降解阳离子聚合物的淋巴结靶向核酸递送载体. |
李泽娟, 同济大学材料科学与工程学院高分子材料系2022级硕士研究生, 研究方向为基于可降解阳离子聚合物的骨靶向核酸递送载体. |
石隽秋, 同济大学材料科学与工程学院高分子材料系2020级博士研究生, 研究方向为非侵入性可降解核酸递送系统的构建与研究. |
朱云卿, 2016 年在英国帝国理工大学获得博士学位. 2017~2019年分别在英国牛津大学和帝国理工大学从事博士后研究工作, 2019年6月入职同济大学. 同济大学青年百人计划研究员, 博士生导师. 主要从事环境友好高分子材料研究, 主持了国家自然科学基金青年科学基金、面上项目等. 以第一/通讯作者在Nature, J. Am. Chem. Soc., Angew. Chem. Int. Ed.等期刊发表SCI论文30多篇, 包括2篇ESI热点论文. |
杜建忠, 中国科学院化学研究所博士(2004年), 谢菲尔德大学、剑桥大学博士后(2004~2010年), 洪堡学者(2006年), 东方学者(2009年). 同济大学长聘特聘教授、学术委员会委员、高分子材料系主任、博士生导师. 英国皇家化学会会士、中国化学会高分子学科委员会委员、中国生物材料学会生物医用高分子材料分会委员、Biomacromolecules等期刊顾问编委. 主要研究领域为高分子化学与物理、生物医用材料, 已在J. Am. Chem. Soc.等期刊发 |
基金资助:
Xu Pu, Zejuan Li, Junqiu Shi, Yunqing Zhu(), Jianzhong Du()
Received:
2023-05-24
Published:
2023-07-03
Contact:
Yunqing Zhu, Jianzhong Du
About author:
Supported by:
Share
Xu Pu, Zejuan Li, Junqiu Shi, Yunqing Zhu, Jianzhong Du. Recent Advances in Organ-Targeting Polymeric Delivery Vectors for Nucleic Acids★[J]. Acta Chimica Sinica, 2023, 81(10): 1438-1446.
[1] |
van den Berg, A. I. S.; Yun, C. O.; Schiffelers, R. M.; Hennink, W. E. J. Controlled Release 2021, 331, 121.
doi: 10.1016/j.jconrel.2021.01.014 |
[2] |
Kulkarni, J. A.; Witzigmann, D.; Thomson, S. B.; Chen, S.; Leavitt, B. R.; Cullis, P. R.; van der Meel, R. Nat. Nanotechnol. 2021, 16, 630.
doi: 10.1038/s41565-021-00898-0 |
[3] |
Guo, Z. P.; Lin, L.; Chen, J.; Tian, H. Y.; Chen, X. S. Chem. J. Chinese U. 2020, 41, 235 (in Chinese).
|
(郭兆培, 林琳, 陈杰, 田华雨, 陈学思, 高等学校化学学报, 2020, 41, 235.)
|
|
[4] |
Kis, Z.; Kontoravdi, C.; Dey, A. K.; Shattock, R.; Shah, N. J. Adv. Manuf. Process. 2020, 2, e10060.
|
[5] |
Weng, Y. H.; Li, C. H.; Yang, T. R.; Hu, B.; Zhang, M. J.; Guo, S.; Xiao, H. H.; Liang, X. J.; Huang, Y. Y. Biotechnol. Adv. 2020, 40, 107534.
doi: 10.1016/j.biotechadv.2020.107534 |
[6] |
Hajj, K. A.; Whitehead, K. A. Nat. Rev. Mater. 2017, 2, 17056.
doi: 10.1038/natrevmats.2017.56 |
[7] |
Kowalski, P. S.; Rudra, A.; Miao, L.; Anderson, D. G. Mol. Ther. 2019, 27, 710.
doi: 10.1016/j.ymthe.2019.02.012 |
[8] |
Meyer, R. A.; Neshat, S. Y.; Green, J. J.; Santos, J. L.; Tuesca, A. D. Mater. Today Adv. 2022, 14, 100240.
|
[9] |
Servick, K. Science 2020, 370, 1388.
doi: 10.1126/science.370.6523.1388 |
[10] |
Blakney, A. K.; Zhu, Y.; McKay, P. F.; Bouton, C. R.; Yeow, J.; Tang, J.; Hu, K.; Samnuan, K.; Grigsby, C. L.; Shattock, R. J.; Stevens, M. M. ACS Nano 2020, 14, 5711.
doi: 10.1021/acsnano.0c00326 |
[11] |
Han, X.; Zhang, L. W.; Zhang, Q.; Sui, X. H.; Qian, M.; Chen, Q. X.; Wang, J. Y. Acta Chim. Sinica 2021, 79, 794 (in Chinese).
doi: 10.6023/A21030090 |
(韩旭, 张留伟, 张强, 睢晞航, 钱明, 陈麒先, 王静云, 化学学报, 2021, 79, 794.)
|
|
[12] |
Wang, H.; Chang, H.; Zhang, Q.; Cheng, Y. Top. Curr. Chem. 2017, 375, 62.
|
[13] |
Kumar, R.; Santa Chalarca, C. F.; Bockman, M. R.; Van Bruggen, C.; Grimme, C. J.; Dalal, R. J.; Hanson, M. G.; Hexum, J. K.; Reineke, T. M. Chem. Rev. 2021, 121, 11527.
doi: 10.1021/acs.chemrev.0c00997 |
[14] |
Mendes, B. B.; Conniot, J.; Avital, A.; Yao, D.; Jiang, X.; Zhou, X.; Sharf-Pauker, N.; Xiao, Y.; Adir, O.; Liang, H.; Shi, J.; Schroeder, A.; Conde, J. Nat. Rev. Methods Primers 2022, 2, 24.
doi: 10.1038/s43586-022-00104-y |
[15] |
Bus, T.; Traeger, A.; Schubert, U. S. J. Mater. Chem. B 2018, 6, 6904.
doi: 10.1039/C8TB00967H |
[16] |
Pei, H.; Deng, H. Z.; Zhou, Y. F.; Chen, X. Y. Matter 2022, 5, 1670.
doi: 10.1016/j.matt.2022.03.006 |
[17] |
Park, T. G.; Jeong, J. H.; Kim, S. W. Adv. Drug Del. Rev. 2006, 58, 467.
doi: 10.1016/j.addr.2006.03.007 |
[18] |
Breunig, M.; Lungwitz, U.; Liebl, R.; Goepferich, A. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 14454.
doi: 10.1073/pnas.0703882104 |
[19] |
Li, M.; Li, Y.; Peng, K.; Wang, Y.; Gong, T.; Zhang, Z. R.; He, Q.; Sun, X. Acta Biomater. 2017, 64, 237.
doi: 10.1016/j.actbio.2017.10.019 |
[20] |
Green, J. J.; Langer, R.; Anderson, D. G. Acc. Chem. Res. 2008, 41, 749.
doi: 10.1021/ar7002336 |
[21] |
Chaudhary, N.; Weissman, D.; Whitehead, K. A. Nat. Rev. Drug Discovery 2021, 20, 817.
doi: 10.1038/s41573-021-00283-5 |
[22] |
Kheraldine, H.; Rachid, O.; Habib, A. M.; Al Moustafa, A.-E.; Benter, I. F.; Akhtar, S. Adv. Drug Del. Rev. 2021, 178, 113908.
doi: 10.1016/j.addr.2021.113908 |
[23] |
Laechelt, U.; Wagner, E. Chem. Rev. 2015, 115, 11043.
doi: 10.1021/cr5006793 |
[24] |
Cedervall, T.; Lynch, I.; Foy, M.; Berggard, T.; Donnelly, S. C.; Cagney, G.; Linse, S.; Dawson, K. A. Angew. Chem., Int. Ed. 2007, 46, 5754.
doi: 10.1002/anie.v46:30 |
[25] |
Lima, T.; Bernfur, K.; Vilanova, M.; Cedervall, T. Sci. Rep. 2020, 10, 1129.
doi: 10.1038/s41598-020-57943-6 |
[26] |
Francia, V.; Schiffelers, R. M.; Cullis, P. R.; Witzigmann, D. Bioconjugate Chem. 2020, 31, 2046.
doi: 10.1021/acs.bioconjchem.0c00366 |
[27] |
Mohammad-Beigi, H.; Hayashi, Y.; Zeuthen, C. M.; Eskandari, H.; Scavenius, C.; Juul-Madsen, K.; Vorup-Jensen, T.; Enghild, J. J.; Sutherland, D. S. Nat. Commun. 2020, 11, 4535.
doi: 10.1038/s41467-020-18237-7 |
[28] |
Owens, D. E.,3rd; Peppas, N. A. Int. J. Pharm. 2006, 307, 93.
doi: 10.1016/j.ijpharm.2005.10.010 |
[29] |
Akinc, A.; Querbes, W.; De, S.; Qin, J.; Frank-Kamenetsky, M.; Jayaprakash, K. N.; Jayaraman, M.; Rajeev, K. G.; Cantley, W. L.; Dorkin, J. R.; Butler, J. S.; Qin, L.; Racie, T.; Sprague, A.; Fava, E.; Zeigerer, A.; Hope, M. J.; Zerial, M.; Sah, D. W. Y.; Fitzgerald, K.; Tracy, M. A.; Manoharan, M.; Koteliansky, V.; de Fougerolles, A.; Maier, M. A. Mol. Ther. 2010, 18, 1357.
doi: 10.1038/mt.2010.85 |
[30] |
Dilliard, S. A.; Cheng, Q.; Siegwart, D. J. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2109256118.
|
[31] |
Song, T.; Xia, Y.; Du, Y.; Chen, M. W.; Qing, H.; Ma, G. Adv. Mater. 2021, 33, 2100106.
doi: 10.1002/adma.v33.26 |
[32] |
Cao, Y.; He, Z.; Chen, Q.; He, X.; Su, L.; Yu, W.; Zhang, M.; Yang, H.; Huang, X.; Li, J. Nano Lett. 2022, 22, 6580.
doi: 10.1021/acs.nanolett.2c01784 |
[33] |
Blanco, E.; Shen, H.; Ferrari, M. Nat. Biotechnol. 2015, 33, 941.
doi: 10.1038/nbt.3330 |
[34] |
Fang, C.; Shi, B.; Pei, Y. Y.; Hong, M. H.; Wu, J.; Chen, H. Z. Eur. J. Pharm. Sci. 2006, 27, 27.
doi: 10.1016/j.ejps.2005.08.002 |
[35] |
Vegh, P.; Fletcher, J.; Dixon, D.; Haniffa, M., In Encyclopedia of Life Sciences, John Wiley and Sons, Hoboken, 2017, pp. 1-8.
|
[36] |
Besin, G.; Milton, J.; Sabnis, S.; Howell, R.; Mihai, C.; Burke, K.; Benenato, K. E.; Stanton, M.; Smith, P.; Senn, J.; Hoge, S. ImmunoHorizons 2019, 3, 282.
doi: 10.4049/immunohorizons.1900029 |
[37] |
Choi, H. S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi, M. G.; Frangioni, J. V. Nat. Biotechnol. 2007, 25, 1165.
doi: 10.1038/nbt1340 |
[38] |
Poon, W.; Zhang, Y. N.; Ouyang, B.; Kingston, B. R.; Wu, J. L. Y.; Wilhelm, S.; Chan, W. C. W. ACS Nano 2019, 13, 5785.
doi: 10.1021/acsnano.9b01383 |
[39] |
Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Nat. Rev. Drug Discovery 2021, 20, 101.
doi: 10.1038/s41573-020-0090-8 |
[40] |
Dilliard, S. A.; Siegwart, D. J. Nat. Rev. Mater. 2023, 8, 282.
doi: 10.1038/s41578-022-00529-7 |
[41] |
Poisson, J.; Lemoinne, S.; Boulanger, C.; Durand, F.; Moreau, R.; Valla, D.; Rautou, P.-E. J. Hepatol. 2017, 66, 212.
doi: 10.1016/j.jhep.2016.07.009 |
[42] |
Sato, Y.; Hatakeyama, H.; Hyodo, M.; Harashima, H. Mol. Ther. 2016, 24, 788.
doi: 10.1038/mt.2015.222 |
[43] |
Schudel, A.; Francis, D. M.; Thomas, S. N. Nat. Rev. Mater. 2019, 4, 415.
doi: 10.1038/s41578-019-0110-7 |
[44] |
Trevaskis, N. L.; Kaminskas, L. M.; Porter, C. J. H. Nat. Rev. Drug Discovery 2015, 14, 781.
doi: 10.1038/nrd4608 |
[45] |
Hassett, K. J.; Higgins, J.; Woods, A.; Levy, B.; Xia, Y.; Hsiao, C. J.; Acosta, E.; Almarsson, O.; Moore, M. J.; Brito, L. A. J. Controlled Release 2021, 335, 237.
doi: 10.1016/j.jconrel.2021.05.021 |
[46] |
Kranz, L. M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K. C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H.; Grunwitz, C.; Vormehr, M.; Husemann, Y.; Selmi, A.; Kuhn, A. N.; Buck, J.; Derhovanessian, E.; Rae, R.; Attig, S.; Diekmann, J.; Jabulowsky, R. A.; Heesch, S.; Hassel, J.; Langguth, P.; Grabbe, S.; Huber, C.; Tureci, O.; Sahin, U. Nature 2016, 534, 396.
doi: 10.1038/nature18300 |
[47] |
Zhao, J. Y.; Song, W. T.; Tang, Z. H.; Chen, X. S. Acta Chim. Sinica 2022, 80, 563 (in Chinese).
doi: 10.6023/A21120602 |
(赵佳雨, 宋万通, 汤朝晖, 陈学思, 化学学报, 2022, 80, 563.)
|
|
[48] |
Li, X.; Guo, X.; Hu, M.; Cai, R.; Chen, C. J. Mater. Chem. B 2023, 11, 2063.
doi: 10.1039/D2TB02455A |
[49] |
Mi, P.; Cabral, H.; Kataoka, K. Adv. Mater. 2020, 32, 1902604.
doi: 10.1002/adma.v32.13 |
[50] |
Li, J. J.; Kataoka, K. J. Am. Chem. Soc. 2021, 143, 538.
doi: 10.1021/jacs.0c09029 |
[51] |
Fornaguera, C.; Guerra-Rebollo, M.; Angel Lazaro, M.; Castells- Sala, C.; Meca-Cortes, O.; Ramos-Perez, V.; Cascante, A.; Rubio, N.; Blanco, J.; Borros, S. Adv. Healthcare Mater. 2018, 7, 1800335.
doi: 10.1002/adhm.v7.17 |
[52] |
Kaczmarek, J. C.; Patel, A. K.; Kauffman, K. J.; Fenton, O. S.; Webber, M. J.; Heartlein, M. W.; DeRosa, F.; Anderson, D. G. Angew. Chem. Int. Ed. 2016, 55, 13808.
doi: 10.1002/anie.v55.44 |
[53] |
Ke, X.; Shelton, L.; Hu, Y.; Zhu, Y.; Chow, E.; Tang, H.; Santos, J. L.; Mao, H. Q. ACS Appl. Mater. Interfaces 2020, 12, 35835.
doi: 10.1021/acsami.0c08268 |
[54] |
Patel, A. K.; Kaczmarek, J. C.; Bose, S.; Kauffman, K. J.; Mir, F.; Heartlein, M. W.; DeRosa, F.; Langer, R.; Anderson, D. G. Adv. Mater. 2019, 31, 1805116.
doi: 10.1002/adma.v31.8 |
[55] |
Gilleron, J.; Querbes, W.; Zeigerer, A.; Borodovsky, A.; Marsico, G.; Schubert, U.; Manygoats, K.; Seifert, S.; Andree, C.; Stoter, M.; Epstein-Barash, H.; Zhang, L. G.; Koteliansky, V.; Fitzgerald, K.; Fava, E.; Bickle, M.; Kalaidzidis, Y.; Akinc, A.; Maier, M.; Zerial, M. Nat. Biotechnol. 2013, 31, 638.
doi: 10.1038/nbt.2612 |
[56] |
Nicoli, E.; Syga, M. I.; Bosetti, M.; Shastri, V. P. PLoS One 2015, 10, e0122581.
|
[57] |
Kermaniyan, S. S.; Chen, M.; Zhang, C.; Smith, S. A.; Johnston, A. P. R.; Such, C.; Such, G. K. Macromol. Biosci. 2022, 22, 2100445.
doi: 10.1002/mabi.v22.5 |
[58] |
Trefts, E.; Gannon, M.; Wasserman, D. H. Curr. Biol. 2017, 27, R1147.
|
[59] |
Rohner, E.; Yang, R.; Foo, K. S.; Goedel, A.; Chien, K. R. Nat. Biotechnol. 2022, 40, 1586.
doi: 10.1038/s41587-022-01491-z |
[60] |
Kristen, A. V.; Ajroud-Driss, S.; Conceicao, I.; Gorevic, P.; Kyriakides, T.; Obici, L. Neurodegener. Dis. Manag. 2019, 9, 5.
doi: 10.2217/nmt-2018-0033 |
[61] |
Lam, J. K.-W.; Liang, W.; Chan, H.-K. Adv. Drug Del. Rev. 2012, 64, 1.
|
[62] |
Miao, L.; Zhang, Y.; Huang, L. Mol. Cancer 2021, 20, 41.
doi: 10.1186/s12943-021-01335-5 |
[63] |
Densmore, C. L.; Orson, F. M.; Xu, B.; Kinsey, B. M.; Waldrep, J. C.; Hua, P.; Bhogal, B.; Knight, V. Mol. Ther. 2000, 1, 180.
doi: 10.1006/mthe.1999.0021 |
[64] |
Rudolph, C.; Lausier, J.; Naundorf, S.; Muller, R. H.; Rosenecker, J. J. Gene Med. 2000, 2, 269.
doi: 10.1002/(ISSN)1521-2254 |
[65] |
Suk, J. S.; Kim, A. J.; Trehan, K.; Schneider, C. S.; Cebotaru, L.; Woodward, O. M.; Boylan, N. J.; Boyle, M. P.; Lai, S. K.; Guggino, W. B.; Hanes, J. J. Controlled Release 2014, 178, 8.
doi: 10.1016/j.jconrel.2014.01.007 |
[66] |
Mastorakos, P.; da Silva, A. L.; Chisholm, J.; Song, E.; Choi, W. K.; Boyle, M. P.; Morales, M. M.; Hanes, J.; Suk, J. S. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 8720.
doi: 10.1073/pnas.1502281112 |
[67] |
Elfinger, M.; Maucksch, C.; Rudolph, C. Biomaterials 2007, 28, 3448.
doi: 10.1016/j.biomaterials.2007.04.011 |
[68] |
Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J. M.; Peer, D. Nat. Commun. 2018, 9, 1410.
doi: 10.1038/s41467-018-03705-y |
[69] |
Chen, Y.; De Koker, S.; De Geest, B. G. Acc. Chem. Res. 2020, 53, 2055.
doi: 10.1021/acs.accounts.0c00260 |
[70] |
Jiang, Y. H.; Lu, Q.; Wang, Y. H.; Xu, E.; Ho, A.; Singh, P.; Wang, Y. F.; Jiang, Z. Z.; Yang, F.; Tietjen, G. T.; Cresswell, P.; Saltzman, W. M. Nano Lett. 2020, 20, 1117.
doi: 10.1021/acs.nanolett.9b04426 |
[71] |
Grun, M. K.; Suberi, A.; Shin, K.; Lee, T.; Gomerdinger, V.; Moscato, Z. M.; Piotrowski-Daspit, A. S.; Saltzman, W. M. Biomaterials 2021, 272, 120780.
doi: 10.1016/j.biomaterials.2021.120780 |
[72] |
Huang, P.; Jiang, L. S.; Pan, H.; Ding, L. W.; Zhou, B.; Zhao, M. Y.; Zou, J. H.; Li, B. H.; Qi, M. W.; Deng, H. Z.; Zhou, Y. F.; Chen, X. Y. Adv. Mater. 2023, 35, 2207471.
doi: 10.1002/adma.v35.3 |
[73] |
Liu, S.; Wang, X.; Yu, X. L.; Cheng, Q.; Johnson, L. T.; Chatterjee, S.; Zhang, D.; Lee, S. M.; Sun, Y. H.; Lin, T. C.; Liu, J. L.; Siegwart, D. J. J. Am. Chem. Soc. 2021, 143, 21321.
doi: 10.1021/jacs.1c09822 |
[74] |
Liu, S.; Cheng, Q.; Wei, T.; Yu, X. L.; Johnson, L. T.; Farbiak, L.; Siegwart, D. J. Nat. Mater. 2021, 20, 701.
doi: 10.1038/s41563-020-00886-0 |
[75] |
Yang, R.; Deng, Y.; Huang, B.; Huang, L.; Lin, A.; Li, Y.; Wang, W.; Liu, J.; Lu, S.; Zhan, Z.; Wang, Y.; Ruhan, A.; Wang, W.; Niu, P.; Zhao, L.; Li, S.; Ma, X.; Zhang, L.; Zhang, Y.; Yao, W.; Liang, X.; Zhao, J.; Liu, Z.; Peng, X.; Li, H.; Tan, W. Signal Transduction Targeted Ther. 2021, 6, 213.
doi: 10.1038/s41392-021-00634-z |
[76] |
Segovia, N.; Dosta, P.; Cascante, A.; Ramos, V.; Borros, S. Acta Biomater. 2014, 10, 2147.
doi: 10.1016/j.actbio.2013.12.054 |
[77] |
Smith, T. T.; Stephan, S. B.; Moffett, H. F.; McKnight, L. E.; Ji, W. H.; Reiman, D.; Bonagofski, E.; Wohlfahrt, M. E.; Pillai, S. P. S.; Stephan, M. T. Nat. Nanotechnol. 2017, 12, 813.
doi: 10.1038/nnano.2017.57 |
[78] |
Parayath, N. N.; Stephan, S. B.; Koehne, A. L.; Nelson, P. S.; Stephan, M. T. Nat. Commun. 2020, 11, 6080.
doi: 10.1038/s41467-020-19486-2 |
[79] |
Kim, H. J.; Seo, S. K.; Park, H. Y. J. Controlled Release 2022, 345, 405.
doi: 10.1016/j.jconrel.2022.03.029 |
[1] | Liwei Hu, Xianhu Liu, Chuntai Liu, Yanlin Song, Mingzhu Li. Self-assembly Fabrication and Applications of Photonic Crystal Structure Color Materials★ [J]. Acta Chimica Sinica, 2023, 81(7): 809-819. |
[2] | Lanying Li, Qing Tao, Yanli Wen, Lele Wang, Ruiyan Guo, Gang Liu, Xiaolei Zuo. Poly-adenine-based DNA Probes and Their Applications in Biosensors★ [J]. Acta Chimica Sinica, 2023, 81(6): 681-690. |
[3] | Jamshid Kadirkhanov, Feng Zhong, Wenjian Zhang, Chunyan Hong. Preparation of Multi-chambered Vesicles by Polymerization-induced Self-assembly and the Influence of Solvophilic Fragments in the Core-forming Blocks [J]. Acta Chimica Sinica, 2022, 80(7): 913-920. |
[4] | Zhiqin Wang, Bo Xiang, Xiaoyu Huang, Guolin Lu. Effect of Phosphotungstic Acid on Self-seeding of Oligo(p-phenylenevinylene)-b-poly(2-vinylpyridine)※ [J]. Acta Chimica Sinica, 2022, 80(3): 297-302. |
[5] | Dong Yin, Hongyi Shang, Wenhao Yu, Shikai Xiang, Ping Hu, Keqing Zhao, Chun Feng, Biqin Wang. Synthesis, Mesomorphism and Gelation Properties of Triazole-Modified Triphenylene 2,3-Dicarboxylic Esters and 2,3-Dicarboxyimides [J]. Acta Chimica Sinica, 2022, 80(10): 1376-1384. |
[6] | Yanmei Jin, Ye Meng, Yuan Li, Jianhua Shi, Lei Deng. Supramolecular Self-assembly of Symmetric Dicyclohexanocucurbit[6]uril and Nicotinic Hydrazide [J]. Acta Chimica Sinica, 2022, 80(1): 44-48. |
[7] | Xusheng Wang, Xu Yang, Chunhui Chen, Hongfang Li, Yuanbiao Huang, Rong Cao. Graphene Quantum Dots Supported on Fe-based Metal-Organic Frameworks for Efficient Photocatalytic CO2 Reduction※ [J]. Acta Chimica Sinica, 2022, 80(1): 22-28. |
[8] | Weihua Li. “Bridge” Makes Differences to the Self-assembly of Block Copolymers [J]. Acta Chimica Sinica, 2021, 79(2): 133-138. |
[9] | Zhao Jingjing, Zhang Zhengzhong, Chen Xiaolang, Wang Bei, Deng Jinyuan, Zhang Dieqing, Li Hexing. Microwave-induced Assembly of CuS@MoS2 Core-shell Nanotubes and Study on Their Photocatalytic Fenton-like Reactions [J]. Acta Chimica Sinica, 2020, 78(9): 961-967. |
[10] | Jiang Jinhui, Zhu Yunqing, Du Jianzhong. Challenges and Perspective on Ring-Opening Polymerization-Induced Self-Assembly [J]. Acta Chimica Sinica, 2020, 78(8): 719-724. |
[11] | Yin Cen, Wang Zikuan, Liu Dan, Peng Zhantao, Song Huanjun, Zhu Hao, Chen Qiwei, Wu Kai. Adsorption and Self-assembly of meso-tetra(p-methoxyphenyl)-porphyrinatocobalt(II) on Coinage Metal Surfaces [J]. Acta Chimica Sinica, 2020, 78(7): 695-702. |
[12] | Liu Mingqian, Wan Xizi, Wang Shutao. Super Adhesive of Nanoparticle Solutions [J]. Acta Chimica Sinica, 2020, 78(6): 463-465. |
[13] | Qie Shuyan, Hao Ying, Liu Zongjian, Wang Jin, Xi Jianing. Advances in Cyclodextrin Polymers and Their Applications in Biomedicine [J]. Acta Chimica Sinica, 2020, 78(3): 232-244. |
[14] | Li Rongye, Khiman Mehul, Sheng Li, Sun Jing. pH/Solvent Tunable Hierarchical Nanostructures Assembled from an Amphiphilic Polypeptide-containing Triblock Copolymer [J]. Acta Chimica Sinica, 2020, 78(11): 1235-1239. |
[15] | Shen Yanglin, Jin Junling, Duan Guangxiong, Xie Yunpeng, Lu Xing. Formation of Spindle-Like Ag58 Cluster Induced by Isomerization of [Ag14] [J]. Acta Chimica Sinica, 2020, 78(11): 1255-1259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||