Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (9): 1202-1214.DOI: 10.6023/A23040186 Previous Articles Next Articles
Special Issue: 庆祝《化学学报》创刊90周年合辑
Review
王一诺a,b, 邵世洋a,c,*(), 王利祥a,b,*()
投稿日期:
2023-04-29
发布日期:
2023-07-05
作者简介:
王一诺, 中国科学院长春应用化学研究所(中国科学技术大学应用化学与工程学院)在读博士研究生. 主要研究方向为有机光电功能材料的合成化学与OLED性能研究. |
邵世洋, 海南大学材料科学与工程学院教授, 博士研究生导师. 2006年本科毕业于武汉大学. 2012年毕业于中国科学院长春应用化学研究所, 获博士学位. 2012至2022年于中国科学院长春应用化学研究所担任助理研究员/副研究员, 2022年加入海南大学工作. 获中国科学院优秀博士学位论文(2013), 入选中国科学院青年创新促进会会员(2015), 获中国科学院青年创新促进会优秀会员(2019)和国家自然科学基金优秀青年科学基金资助(2021). 主要从事有机高分子发光材料的合成化学与性能研究. |
王利祥, 中国科学院长春应用化学研究所研究员, 博士研究生导师. 1984年本科毕业于黑龙江大学. 1989年博士毕业于中国科学院长春应用化学研究所. 1994年至1997年依次担任德国马普高分子研究所 “洪堡”学者、美国麻省大学Amherst分校高分子科学与工程系担任访问学者. 1993年至今, 任职于中国科学院长春应用化学研究所. 国家杰出青年基金获得者(1997年), 科技部973项目首席科学家, 中组部万人计划科技创新领军人才. 获国家自然科学奖二等奖1项(2009年)、吉林省科学技术进步一等奖2项(2007和2012年). 发表学术论文380 余篇, 获权中国发明专利50项, 美国发明专利1项. 目前担任中国化学会有机固体专业委员会副主任委员、《Chin. J. Polym. Sci.》和《化学学报》副主编、《高分子学报》《应用化学》和《化学进展》编委. 长期从事光电功能高分子的合成化学与性能研究. |
基金资助:
Yinuo Wanga,b, Shiyang Shaoa,c(), Lixiang Wanga,b()
Received:
2023-04-29
Published:
2023-07-05
Contact:
*E-mail: About author:
Supported by:
Share
Yinuo Wang, Shiyang Shao, Lixiang Wang. Recent Advances in Multiple Resonance Organic/Polymer Fluorescent Materials with Narrowband Emission★[J]. Acta Chimica Sinica, 2023, 81(9): 1202-1214.
[1] |
Hong, G.; Gan, X.; Leonhardt, C.; Zhang, Z.; Seibert, J.; Busch, J. M.; Brase, S. Adv. Mater. 2021, 33, e2005630.
|
[2] |
Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
doi: 10.1063/1.98799 |
[3] |
Burroughes, J.; Bradley, D.; Brown, A.; Marks, R.; Mackay, K.; Friend, R.; Burns, P.; Holmes, A. Nature 1990, 347, 539.
doi: 10.1038/347539a0 |
[4] |
Wang, Y.; Han, M.; Huang, D.; Liu, X.; Hou, L. Imaging Sci. Photochem. 2021, 39, 1. (in Chinese)
|
(王亚丽, 韩美英, 黄达, 刘贤豪, 侯丽新, 影像科学与光化学, 2021, 39, 1.)
doi: 10.7517/issn.1674-0475.201112 |
|
[5] |
Jankus, V.; Data, P.; Graves, D.; McGuinness, C.; Santos, J.; Bryce, M. R.; Dias, F. B.; Monkman, A. P. Adv. Funct. Mater. 2014, 24, 6178.
doi: 10.1002/adfm.v24.39 |
[6] |
Baldo, M.; O'Brien, D.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M.; Forrest, S. Nature 1998, 395, 151.
doi: 10.1038/25954 |
[7] |
Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; Gong, Q.; Kido, J. Adv. Mater. 2011, 23, 926.
doi: 10.1002/adma.v23.8 |
[8] |
Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.
doi: 10.1038/nature11687 |
[9] |
Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931.
doi: 10.1002/adma.v26.47 |
[10] |
Im, Y.; Kim, M.; Cho, Y. J.; Seo, J.-A.; Yook, K. S.; Lee, J. Y. Chem. Mater. 2017, 29, 1946.
doi: 10.1021/acs.chemmater.6b05324 |
[11] |
Wong, M. Y.; Zysman-Colman, E. Adv. Mater. 2017, 29, 1605444.
doi: 10.1002/adma.v29.22 |
[12] |
Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P. Chem. Soc. Rev. 2017, 46, 915.
doi: 10.1039/C6CS00368K |
[13] |
Cai, X.; Su, S.-J. Adv. Funct. Mater. 2018, 28, 1802558.
doi: 10.1002/adfm.v28.43 |
[14] |
Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R. Nat. Rev. Mater. 2018, 3, 18020.
doi: 10.1038/natrevmats.2018.20 |
[15] |
Nakanotani, H.; Tsuchiya, Y.; Adachi, C. Chem. Lett. 2021, 50, 938.
doi: 10.1246/cl.200915 |
[16] |
Madayanad, S. M.; Hall, D.; Beljonne, D.; Olivier, Y.; Zysman‐Colman, E. Adv. Funct. Mater. 2020, 30, 1908677.
doi: 10.1002/adfm.v30.33 |
[17] |
Kothavale, S. S.; Lee, J. Y. Adv. Opt. Mater. 2020, 8, 2000922.
doi: 10.1002/adom.v8.22 |
[18] |
Teng, J.-M.; Wang, Y.-F.; Chen, C.-F. J. Mater. Chem. C 2020, 8, 11340.
doi: 10.1039/D0TC02682D |
[19] |
Ha, J. M.; Hur, S. H.; Pathak, A.; Jeong, J.-E.; Woo, H. Y. NPG Asia Mater. 2021, 13, 53.
doi: 10.1038/s41427-021-00318-8 |
[20] |
Han, J.; Chen, Y.; Li, N.; Huang, Z.; Yang, C. Aggregate 2022, 3, e182.
doi: 10.1002/agt2.v3.5 |
[21] |
Kim, H. J.; Yasuda, T. Adv. Opt. Mater. 2022, 10, 2201714.
doi: 10.1002/adom.v10.22 |
[22] |
Ma, P.; Han, C.; Xu, H. J. Eng. Heilongjiang Univ. 2021, 12, 63. (in Chinese)
|
(马鹏, 韩春苗, 许辉, 黑龙江大学工程学报, 2021, 12, 63.)
|
|
[23] |
Ji, L.; Griesbeck, S.; Marder, T. B. Chem. Sci. 2017, 8, 846.
doi: 10.1039/C6SC04245G |
[24] |
Grotthuss, E.; John, A.; Kaese, T.; Wagner, M. Asian J. Org. Chem. 2018, 7, 37.
doi: 10.1002/ajoc.v7.1 |
[25] |
Li, D.; Zhang, H.; Wang, Y. Chem. Soc. Rev. 2013, 42, 8416.
doi: 10.1039/c3cs60170f |
[26] |
Yang, M.; Park, I. S.; Yasuda, T. J. Am. Chem. Soc. 2020, 142, 19468.
doi: 10.1021/jacs.0c10081 |
[27] |
Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta, T. Adv. Mater. 2016, 28, 2777.
doi: 10.1002/adma.201505491 |
[28] |
Xu, Y.; Cheng, Z.; Li, Z.; Liang, B.; Wang, J.; Wei, J.; Zhang, Z.; Wang, Y. Adv. Opt. Mater. 2020, 8, 1902142.
doi: 10.1002/adom.v8.9 |
[29] |
Zhang, Y.; Zhang, D.; Wei, J.; Liu, Z.; Lu, Y.; Duan, L. Angew. Chem., Int. Ed. 2019, 58, 16912.
doi: 10.1002/anie.v58.47 |
[30] |
Yang, M.; Shikita, S.; Min, H.; Park, I. S.; Shibata, H.; Amanokura, N.; Yasuda, T. Angew. Chem., Int. Ed. 2021, 60, 23142.
doi: 10.1002/anie.v60.43 |
[31] |
Matsui, K.; Oda, S.; Yoshiura, K.; Nakajima, K.; Yasuda, N.; Hatakeyama, T. J. Am. Chem. Soc. 2018, 140, 1195.
doi: 10.1021/jacs.7b10578 pmid: 29120174 |
[32] |
Oda, S.; Kumano, W.; Hama, T.; Kawasumi, R.; Yoshiura, K.; Hatakeyama, T. Angew. Chem., Int. Ed. 2021, 60, 2882.
doi: 10.1002/anie.v60.6 |
[33] |
Wang, Y.; Di, K.; Duan, Y.; Guo, R.; Lian, L.; Zhang, W.; Wang, L. Chem. Eng. J. 2022, 431, 133221.
doi: 10.1016/j.cej.2021.133221 |
[34] |
Kondo, Y.; Yoshiura, K.; Kitera, S.; Nishi, H.; Oda, S.; Gotoh, H.; Sasada, Y.; Yanai, M.; Hatakeyama, T. Nat. Photonics 2019, 13, 678.
doi: 10.1038/s41566-019-0476-5 |
[35] |
Park, J.; Lim, J.; Lee, J. H.; Jang, B.; Han, J. H.; Yoon, S. S.; Lee, J. Y. ACS Appl. Mater. Interfaces 2021, 13, 45798.
doi: 10.1021/acsami.1c11399 |
[36] |
Nagata, M.; Min, H.; Watanabe, E.; Fukumoto, H.; Mizuhata, Y.; Tokitoh, N.; Agou, T.; Yasuda, T. Angew. Chem., Int. Ed. 2021, 60, 20280.
doi: 10.1002/anie.v60.37 |
[37] |
Hua, T.; Miao, J.; Xia, H.; Huang, Z.; Cao, X.; Li, N.; Yang, C. Adv. Funct. Mater. 2022, 32, 2201032.
doi: 10.1002/adfm.v32.31 |
[38] |
Li, Q.; Wu, Y.; Wang, X.; Yang, Q.; Hu, J.; Zhong, R.; Shao, S.; Wang, L. Chem. Eur. J. 2022, 28, e202104214.
doi: 10.1002/chem.v28.12 |
[39] |
Park, I. S.; Min, H.; Yasuda, T. Angew. Chem., Int. Ed. 2022, 61, e202205684.
doi: 10.1002/anie.v61.31 |
[40] |
Li, Q.; Wu, Y.; Yang, Q.; Wang, S.; Shao, S.; Wang, L. ACS Appl. Mater. Interfaces 2022, 14, 49995.
doi: 10.1021/acsami.2c12017 |
[41] |
Xu, Y.; Li, C.; Li, Z.; Wang, J.; Xue, J.; Wang, Q.; Cai, X.; Wang, Y. CCS Chem. 2022, 4, 2065.
doi: 10.31635/ccschem.021.202101033 |
[42] |
Xu, Y.; Li, C.; Li, Z.; Wang, Q.; Cai, X.; Wei, J.; Wang, Y. Angew. Chem., Int. Ed. 2020, 59, 17442.
doi: 10.1002/anie.v59.40 |
[43] |
Zhang, Y.; Zhang, D.; Wei, J.; Hong, X.; Lu, Y.; Hu, D.; Li, G.; Liu, Z.; Chen, Y.; Duan, L. Angew. Chem., Int. Ed. 2020, 59, 17499.
doi: 10.1002/anie.v59.40 |
[44] |
Zhang, Y.; Li, G.; Wang, L.; Huang, T.; Wei, J.; Meng, G.; Wang, X.; Zeng, X.; Zhang, D.; Duan, L. Angew. Chem., Int. Ed. 2022, 61, e202202380.
doi: 10.1002/anie.v61.24 |
[45] |
Xu, Y.; Wang, Q.; Wei, J.; Peng, X.; Xue, J.; Wang, Z.; Su, S. J.; Wang, Y. Angew. Chem., Int. Ed. 2022, 61, e202204652.
doi: 10.1002/anie.v61.30 |
[46] |
Jiang, P.; Zhan, L.; Cao, X.; Lv, X.; Gong, S.; Chen, Z.; Zhou, C.; Huang, Z.; Ni, F.; Zou, Y.; Yang, C. Adv. Opt. Mater. 2021, 9, 2100825.
doi: 10.1002/adom.v9.21 |
[47] |
Uemura, S.; Oda, S.; Hayakawa, M.; Kawasumi, R.; Ikeda, N.; Lee, Y.-T.; Chan, C.-Y.; Tsuchiya, Y.; Adachi, C.; Hatakeyama, T. J. Am. Chem. Soc. 2022, 145, 1505.
doi: 10.1021/jacs.2c10946 |
[48] |
Ikeda, N.; Oda, S.; Matsumoto, R.; Yoshioka, M.; Fukushima, D.; Yoshiura, K.; Yasuda, N.; Hatakeyama, T. Adv. Mater. 2020, 32, e2004072.
|
[49] |
Cai, X.; Xue, J.; Li, C.; Liang, B.; Ying, A.; Tan, Y.; Gong, S.; Wang, Y. Angew. Chem., Int. Ed. 2022, 61, e202200337.
doi: 10.1002/anie.v61.23 |
[50] |
Liu, F.; Cheng, Z.; Jiang, Y.; Gao, L.; Liu, H.; Liu, H.; Feng, Z.; Lu, P.; Yang, W. Angew. Chem., Int. Ed. 2022, 61, e202116927.
doi: 10.1002/anie.v61.14 |
[51] |
Cao, X.; Pan, K.; Miao, J.; Lv, X.; Huang, Z.; Ni, F.; Yin, X.; Wei, Y.; Yang, C. J. Am. Chem. Soc. 2022, 144, 22976.
doi: 10.1021/jacs.2c09543 |
[52] |
Meng, G.; Dai, H.; Huang, T.; Wei, J.; Zhou, J.; Li, X.; Wang, X.; Hong, X.; Yin, C.; Zeng, X.; Zhang, Y.; Yang, D.; Ma, D.; Li, G.; Zhang, D.; Duan, L. Angew. Chem., Int. Ed. 2022, 61, e202207293.
doi: 10.1002/anie.v61.40 |
[53] |
Qi, Y.; Ning, W.; Zou, Y.; Cao, X.; Gong, S.; Yang, C. Adv. Funct. Mater. 2021, 31, 2102017.
doi: 10.1002/adfm.v31.29 |
[54] |
Luo, X. F.; Ni, H. X.; Lv, A. Q.; Yao, X. K.; Ma, H. L.; Zheng, Y. X. Adv. Opt. Mater. 2022, 10, 2200504.
doi: 10.1002/adom.v10.16 |
[55] |
Liu, Y.; Xiao, X.; Ran, Y.; Bin, Z.; You, J. Chem. Sci. 2021, 12, 9408.
doi: 10.1039/D1SC02042K |
[56] |
Zhang, Y.; Wei, J.; Wang, L.; Huang, T.; Meng, G.; Wang, X.; Zeng, X.; Du, M.; Fan, T.; Yin, C.; Zhang, D.; Duan, L. Adv. Mater. 2023, 35, e2209396.
|
[57] |
Zhang, Y.; Zhang, D.; Huang, T.; Gillett, A. J.; Liu, Y.; Hu, D.; Cui, L.; Bin, Z.; Li, G.; Wei, J.; Duan, L. Angew. Chem., Int. Ed. 2021, 60, 20498.
doi: 10.1002/anie.v60.37 |
[58] |
Wang, Y.; Zhang, K.; Chen, F.; Wang, X.; Yang, Q.; Wang, S.; Shao, S.; Wang, L. Chin. J. Chem. 2022, 40, 2671.
doi: 10.1002/cjoc.v40.22 |
[59] |
Zou, Y.; Hu, J.; Yu, M.; Miao, J.; Xie, Z.; Qiu, Y.; Cao, X.; Yang, C. Adv. Mater. 2022, 34, e2201442.
|
[60] |
Hirai, H.; Nakajima, K.; Nakatsuka, S.; Shiren, K.; Ni, J.; Nomura, S.; Ikuta, T.; Hatakeyama, T. Angew. Chem., Int. Ed. 2015, 54, 13581.
doi: 10.1002/anie.201506335 |
[61] |
Kitamoto, Y.; Suzuki, K.; Miyata, Y.; Kita, H.; Funaki, K.; Oi, S. Chem. Commun. 2016, 52, 7098.
doi: 10.1039/C6CC02440H |
[62] |
Chen, F.; Zhao, L.; Wang, X.; Yang, Q.; Li, W.; Tian, H.; Shao, S.; Wang, L.; Jing, X.; Wang, F. Sci. China: Chem. 2021, 64, 547.
doi: 10.1007/s11425-017-9418-x |
[63] |
Chang, Y.; Wu, Y.; Wang, X.; Li, W.; Yang, Q.; Wang, S.; Shao, S.; Wang, L. Chem. Eng. J. 2023, 451, 138545.
doi: 10.1016/j.cej.2022.138545 |
[64] |
Yuan, Y.; Tang, X.; Du, X. Y.; Hu, Y.; Yu, Y. J.; Jiang, Z. Q.; Liao, L. S.; Lee, S. T. Adv. Opt. Mater. 2019, 7, 1801536.
doi: 10.1002/adom.v7.7 |
[65] |
Zou, S. N.; Peng, C. C.; Yang, S. Y.; Qu, Y. K.; Yu, Y. J.; Chen, X.; Jiang, Z. Q.; Liao, L. S. Org. Lett. 2021, 23, 958.
doi: 10.1021/acs.orglett.0c04159 |
[66] |
Huang, F.; Wang, K.; Shi, Y. Z.; Fan, X. C.; Zhang, X.; Yu, J.; Lee, C. S.; Zhang, X. H. ACS Appl. Mater. Interfaces 2021, 13, 36089.
doi: 10.1021/acsami.1c09743 |
[67] |
Sun, D.; Suresh, S. M.; Hall, D.; Zhang, M.; Si, C.; Cordes, D. B.; Slawin, A. M. Z.; Olivier, Y.; Zhang, X.; Zysman-Colman, E. Mater. Chem. Front. 2020, 4, 2018.
doi: 10.1039/D0QM00190B |
[68] |
Min, H.; Park, I. S.; Yasuda, T. Angew. Chem., Int. Ed. 2021, 60, 7643.
doi: 10.1002/anie.v60.14 |
[69] |
Wu, S.; Kumar Gupta, A.; Yoshida, K.; Gong, J.; Hall, D.; Cordes, D. B.; Slawin, A. M. Z.; Samuel, I. D. W.; Zysman-Colman, E. Angew. Chem., Int. Ed. 2022, 61, e202213697.
doi: 10.1002/anie.v61.52 |
[70] |
Fan, X. C.; Wang, K.; Shi, Y. Z.; Chen, J. X.; Huang, F.; Wang, H.; Hu, Y. N.; Tsuchiya, Y.; Ou, X. M.; Yu, J.; Adachi, C.; Zhang, X. H. Adv. Opt. Mater. 2022, 10, 2101789.
doi: 10.1002/adom.v10.3 |
[71] |
Lee, H. L.; Chung, W. J.; Lee, J. Y. Small 2020, 16, e1907569.
|
[72] |
Patil, V. V.; Lee, H. L.; Kim, I.; Lee, K. H.; Chung, W. J.; Kim, J.; Park, S.; Choi, H.; Son, W. J.; Jeon, S. O.; Lee, J. Y. Adv. Sci. 2021, 8, 2101137.
doi: 10.1002/advs.v8.20 |
[73] |
Lee, H.; Jeon, S.; Kim, I.; Kim, S.; Lim, J.; Kim, J.; Park, S.; Chwae, J.; Son, W.; Choi, H.; Lee, J. Adv. Mater. 2022, 34, 2202464.
doi: 10.1002/adma.v34.33 |
[74] |
Zeng, X.; Wang, X.; Zhang, Y.; Meng, G.; Wei, J.; Liu, Z.; Jia, X.; Li, G.; Duan, L.; Zhang, D. Angew. Chem., Int. Ed. 2022, 61, 202117181.
|
[75] |
Lee, S. Y.; Yasuda, T.; Komiyama, H.; Lee, J.; Adachi, C. Adv. Mater. 2016, 28, 4019.
doi: 10.1002/adma.201505026 |
[76] |
Ren, Z.; Nobuyasu, R. S.; Dias, F. B.; Monkman, A. P.; Yan, S.; Bryce, M. R. Macromolecules 2016, 49, 5452.
doi: 10.1021/acs.macromol.6b01216 |
[77] |
Xie, G.; Luo, J.; Huang, M.; Chen, T.; Wu, K.; Gong, S.; Yang, C. Adv. Mater. 2017, 29, 1604223.
doi: 10.1002/adma.201604223 |
[78] |
Wang, T.; Zou, Y.; Huang, Z.; Li, N.; Miao, J.; Yang, C. Angew. Chem., Int. Ed. 2022, 61, 202211172.
|
[79] |
Hu, Y.; Miao, J.; Zhong, C.; Zeng, Y.; Gong, S.; Cao, X.; Zhou, X.; Gu, Y.; Yang, C. Angew. Chem., Int. Ed. 2023, 62, e202302478.
doi: 10.1002/anie.v62.19 |
[80] |
Liu, T.; Cheng, C.; Lou, W.; Deng, C.; Liu, J.; Wang, D.; Tsuboi, T.; Zhang, Q. J. Mater. Chem. C 2022, 10, 7799.
doi: 10.1039/D2TC00921H |
[1] | Fengjie Ge, Kaizhi Zhang, Qingpeng Cao, Hui Xu, Tao Zhou, Wenhao Zhang, Xinxin Ban, Xiaobo Zhang, Na Li, Peng Zhu. Design, Synthesis and Electroluminescence Performance of Flexible Fluorenyl Block Delayed Fluorescence Dimers [J]. Acta Chimica Sinica, 2023, 81(9): 1157-1166. |
[2] | Zhenyu Liu, Junfeng Rao, Shoujia Zhu, Bingyang Wang, Fan Yu, Quanyou Feng, Linghai Xie. Research Progress of Solution-Processed Self-Host Thermally Activated Delayed Fluorescence Materials [J]. Acta Chimica Sinica, 2023, 81(7): 820-835. |
[3] | Yinfeng Wang, Meng Li, Chuanfeng Chen. Chiral Triptycene-Based Red Thermally Activated Delayed Fluorescence Polymers and Their Organic Light-Emitting Diodes★ [J]. Acta Chimica Sinica, 2023, 81(6): 588-594. |
[4] | Shaoqin Zhang, Meiqing Li, Zhongjun Zhou, Zexing Qu. Theoretical Study on the Multiple Resonance Thermally Activated Delayed Fluorescence Process [J]. Acta Chimica Sinica, 2023, 81(2): 124-130. |
[5] | Lu Zhou, Jia-Xiong Chen, Shaomin Ji, Wen-Cheng Chen, Yanping Huo. Research Progress of Red Thermally Activated Delayed Fluorescent Materials Based on Quinoxaline [J]. Acta Chimica Sinica, 2022, 80(3): 359-372. |
[6] | Tao Zhou, Yue Qian, Hongjian Wang, Quanyou Feng, Linghai Xie, Wei Huang. Recent Advances in Substituent Effects of Blue Thermally Activated Delayed Fluorescence Small Molecules [J]. Acta Chimica Sinica, 2021, 79(5): 557-574. |
[7] | Zhi-Peng Liang, Rui Tang, Yu-Chen Qiu, Yang Wang, Hongbin Lu, Zheng-Guang Wu. Construction and Properties of Octahydrobinaphthol-based Chiral Luminescent Materials with Large Steric Hindrance [J]. Acta Chimica Sinica, 2021, 79(11): 1401-1408. |
[8] | Cao Hongtao, Li Bo, Wan Jun, Yu Tao, Xie Linghai, Sun Chen, Liu Yuyu, Wang Jin, Huang Wei. Cyano-substituted Spiro[fluorine-9,9'-xanthene] Derivatives: Exciplex Emission and Property Manipulation [J]. Acta Chimica Sinica, 2020, 78(7): 680-687. |
[9] | Wang Zhiqiang, Bai Meidan, Zhang Ming, Zhang Zhiqiang, Feng Xun, Zheng Caijun. Synthesis and Properties of Two Novel Thermally Activated Delayed Fluorescence Materials with 1,3,5-Tribenzoylbenzene as Electron-Acceptor [J]. Acta Chimica Sinica, 2020, 78(2): 140-146. |
[10] | Wang Zhiqiang, Cai Jialin, Zhang Ming, Zheng Caijun, Ji Baoming. A Novel Yellow Thermally Activated Delayed Fluorescence Emitter For Highly Efficient Organic Light-Emitting Diodes [J]. Acta Chim. Sinica, 2019, 77(3): 263-268. |
[11] | Wu Youxiong, Ren Hongyang, Wu Yifang, Wang Bingxi. Theoretical Study of Energy Gaps for Naphthalimide-based Charge Transfer Compounds [J]. Acta Chim. Sinica, 2015, 73(1): 53-59. |
[12] | Zhao Lingling, Jiu Yuanda, Wang Jianyun, Zhang Xinwen, Lai Wenyong, Huang Wei . Synthesis and Characterization of Starburst Conjugated Molecules with Multiple p-n Branches for Narrow Band Gap Modulation [J]. Acta Chimica Sinica, 2013, 71(9): 1248-1256. |
[13] | ZHAO, Ting, DING, Hong-Liu, SHI, Guo-Yue, JIN, Li-Tong*. Synthesis of Bis(2-biphenyl-4'-yl-8-quinolinolato)zinc and Its Application in a Novel White OLED [J]. Acta Chimica Sinica, 2008, 66(10): 1209-1214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||