Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (2): 124-130.DOI: 10.6023/A22110472 Previous Articles Next Articles
Article
张少秦a, 李美清b, 周中军a,*(), 曲泽星a,*()
投稿日期:
2022-11-24
发布日期:
2023-01-10
通讯作者:
周中军, 曲泽星
基金资助:
Shaoqin Zhanga, Meiqing Lib, Zhongjun Zhoua(), Zexing Qua()
Received:
2022-11-24
Published:
2023-01-10
Contact:
Zhongjun Zhou, Zexing Qu
Supported by:
Share
Shaoqin Zhang, Meiqing Li, Zhongjun Zhou, Zexing Qu. Theoretical Study on the Multiple Resonance Thermally Activated Delayed Fluorescence Process[J]. Acta Chimica Sinica, 2023, 81(2): 124-130.
Method | BCz-BN | 2PTZ-BN | Cz-PTZ-BN | 2Cz-PTZ-BN | MUE | |
---|---|---|---|---|---|---|
UV-Vis (S0→S1) | B3LYP | 2.81 | 2.65 | 2.77 | 2.83 | 0.12 |
CAM-B3LYP | 3.29 | 3.19 | 3.30 | 3.36 | 0.64 | |
wB97XD | 3.35 | 3.25 | 3.35 | 3.41 | 0.69 | |
M062X | 3.25 | 3.14 | 3.25 | 3.30 | 0.59 | |
CC2 | 2.77 | 2.54 | 2.70 | 2.85 | 0.13 | |
Exp. | 2.70 | 2.67 | 2.58 | 2.64 | — | |
FL (S1→S0) | B3LYP | 2.70 | 2.37 | 2.46 | 2.60 | 0.09 |
CAM-B3LYP | 3.20 | 2.92 | 3.06 | 3.16 | 0.63 | |
wB97XD | 3.27 | 2.98 | 3.13 | 3.21 | 0.70 | |
M062X | 3.15 | 2.86 | 2.99 | 3.09 | 0.57 | |
CC2 | 2.60 | 2.23 | 2.40 | 2.64 | 0.11 | |
Exp. | 2.53 | 2.39 | 2.43 | 2.46 | — | |
PH (T1→S0) | B3LYP | 2.34 | 2.04 | 2.12 | 2.12 | 0.17 |
CAM-B3LYP | 2.57 | 2.44 | 2.50 | 2.54 | 0.19 | |
wB97XD | 2.68 | 2.50 | 2.58 | 2.61 | 0.27 | |
M062X | 2.72 | 2.45 | 2.53 | 2.55 | 0.24 | |
CC2 | 2.52 | 2.11 | 2.25 | 2.42 | 0.09 | |
Exp. | 2.43 | 2.21 | 2.32 | 2.34 | — |
Method | BCz-BN | 2PTZ-BN | Cz-PTZ-BN | 2Cz-PTZ-BN | MUE | |
---|---|---|---|---|---|---|
UV-Vis (S0→S1) | B3LYP | 2.81 | 2.65 | 2.77 | 2.83 | 0.12 |
CAM-B3LYP | 3.29 | 3.19 | 3.30 | 3.36 | 0.64 | |
wB97XD | 3.35 | 3.25 | 3.35 | 3.41 | 0.69 | |
M062X | 3.25 | 3.14 | 3.25 | 3.30 | 0.59 | |
CC2 | 2.77 | 2.54 | 2.70 | 2.85 | 0.13 | |
Exp. | 2.70 | 2.67 | 2.58 | 2.64 | — | |
FL (S1→S0) | B3LYP | 2.70 | 2.37 | 2.46 | 2.60 | 0.09 |
CAM-B3LYP | 3.20 | 2.92 | 3.06 | 3.16 | 0.63 | |
wB97XD | 3.27 | 2.98 | 3.13 | 3.21 | 0.70 | |
M062X | 3.15 | 2.86 | 2.99 | 3.09 | 0.57 | |
CC2 | 2.60 | 2.23 | 2.40 | 2.64 | 0.11 | |
Exp. | 2.53 | 2.39 | 2.43 | 2.46 | — | |
PH (T1→S0) | B3LYP | 2.34 | 2.04 | 2.12 | 2.12 | 0.17 |
CAM-B3LYP | 2.57 | 2.44 | 2.50 | 2.54 | 0.19 | |
wB97XD | 2.68 | 2.50 | 2.58 | 2.61 | 0.27 | |
M062X | 2.72 | 2.45 | 2.53 | 2.55 | 0.24 | |
CC2 | 2.52 | 2.11 | 2.25 | 2.42 | 0.09 | |
Exp. | 2.43 | 2.21 | 2.32 | 2.34 | — |
BCz-BN | 2PTZ-BN | Cz-PTZ-BN | 2Cz-PTZ-BN | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
π→π* | n→π* | π→π* | n→π* | π→π* | n→π* | π→π* | n→π* | ||||
S1 | 98% | 0% | 85% | 15% | 87% | 13% | 84% | 16% | |||
T1 | 94% | 0% | 85% | 15% | 88% | 12% | 85% | 15% | |||
T2 | 84% | 0% | 86% | 14% | 88% | 12% | 86% | 14% |
BCz-BN | 2PTZ-BN | Cz-PTZ-BN | 2Cz-PTZ-BN | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
π→π* | n→π* | π→π* | n→π* | π→π* | n→π* | π→π* | n→π* | ||||
S1 | 98% | 0% | 85% | 15% | 87% | 13% | 84% | 16% | |||
T1 | 94% | 0% | 85% | 15% | 88% | 12% | 85% | 15% | |||
T2 | 84% | 0% | 86% | 14% | 88% | 12% | 86% | 14% |
[1] |
(a) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature. 2012, 492, 234.
doi: 10.1038/nature11687 |
(b) Adachi, C. Jpn. J. Appl. Phys. 2014, 53, 060101.
doi: 10.7567/JJAP.53.060101 |
|
[2] |
(a) Liu, Y.; Li, C.; Ren, Z.; Yan, S.; Bryce, M. R. Nat. Rev. Mater. 2018, 3, 18020.
doi: 10.1038/natrevmats.2018.20 |
(b) Chen, D.; Li, W.; Gan, L.; Wang, Z.; Li, M.; Su, S.-J. Mater. Sci. Eng. R Rep. 2020, 142, 100581.
doi: 10.1016/j.mser.2020.100581 |
|
(c) Xiao, Y.; Wang, H.; Xie, Z.; Shen, M.; Huang, R.; Miao, Y.; Liu, G.; Yu, T.; Huang, W. Chem. Sci. 2022, 13, 8906.
doi: 10.1039/D2SC02201J |
|
[3] |
(a) Dias, F. B.; Penfold, T. J.; Monkman, A. P. Methods Appl. Fluoresc. 2017, 5, 012001.
doi: 10.1088/2050-6120/aa537e |
(b) Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P. Chem. Soc. Rev. 2017, 46, 915.
doi: 10.1039/C6CS00368K |
|
[4] |
(a) Cao, H.; Hou, P. Acta Chim. Sinica. 2022, 80, 1476. (in Chinese)
doi: 10.6023/A22070335 |
(曹洪涛, 侯鹏飞, 化学学报, 2022, 80, 1476.)
doi: 10.6023/A22070335 |
|
(b) Wang, T.; Hua, X.; Yu, Y.; Yuan, Y.; Feng, M.; Jiang, Z. Chin. J. Org. Chem. 2019, 39, 1436. (in Chinese)
doi: 10.6023/cjoc201810016 |
|
(王彤彤, 华晓晨, 郁友军, 袁熠, 冯敏强, 蒋佐权, 有机化学, 2019, 39, 1436.)
doi: 10.6023/cjoc201810016 |
|
(c) Zheng, Y.; Xie, Q.; Wang, B. Chin. J. Org. Chem. 2016, 36, 803. (in Chinese)
doi: 10.6023/cjoc201510008 |
|
(郑月游, 谢琼琳, 王炳喜, 有机化学, 2016, 36, 803.)
doi: 10.6023/cjoc201510008 |
|
[5] |
(a) Ikeda, N.; Oda, S.; Matsumoto, R.; Yoshioka, M.; Fukushima, D.; Yoshiura, K.; Yasuda, N.; Hatakeyama, T. Adv. Mater. 2020, 32, 2004072.
doi: 10.1002/adma.202004072 |
(b) Kondo, Y.; Yoshiura, K.; Kitera, S.; Nishi, H.; Oda, S.; Gotoh, H.; Sasada, Y.; Yanai, M.; Hatakeyama, T. Nat. Photonics. 2019, 13, 678.
doi: 10.1038/s41566-019-0476-5 |
|
[6] |
Hatakeyama, T.; Shiren, K.; Nakajima, K.; Nomura, S.; Nakatsuka, S.; Kinoshita, K.; Ni, J.; Ono, Y.; Ikuta, T. Adv. Mater. 2016, 28, 2777.
doi: 10.1002/adma.201505491 |
[7] |
(a) Lee, H.; Braveenth, R.; Park, J. D.; Jeon, C. Y.; Lee, H. S.; Kwon, J. H. ACS Appl. Mater. Interfaces. 2022, 14, 36927.
doi: 10.1021/acsami.2c10127 |
(b) Kim, H. J.; Yasuda, T. Adv. Opt. Mater. 2022, 1, 1765.
|
|
[8] |
(a) Madayanad Suresh, S.; Hall, D.; Beljonne, D.; Olivier, Y.; Zysman‐Colman, E. Adv. Funct. Mater. 2020, 30, 1908677.
doi: 10.1002/adfm.201908677 |
(b) Nakanotani, H.; Tsuchiya, Y.; Adachi, C. Chem. Lett. 2021, 50, 938.
doi: 10.1246/cl.200915 |
|
[9] |
(a) Zhang, Y.; Zhang, D.; Wei, J.; Liu, Z.; Lu, Y.; Duan, L. Angew. Chem. Int. Ed. 2019, 58, 16912.
doi: 10.1002/anie.201911266 |
(b) Xu, Y.; Wang, Q.; Cai, X.; Li, C.; Wang, Y. Adv. Mater. 2021, 33, 2100652.
doi: 10.1002/adma.202100652 |
|
(c) Qi, Y.; Ning, W.; Zou, Y.; Cao, X.; Gong, S.; Yang, C. Adv. Funct. Mater. 2021, 31, 2102017.
doi: 10.1002/adfm.202102017 |
|
(d) Yang, M.; Park, I. S.; Yasuda, T. J. Am. Chem. Soc. 2020, 142, 19468.
doi: 10.1021/jacs.0c10081 |
|
(e) Yang, M.; Shikita, S.; Min, H.; Park, I. S.; Shibata, H.; Amanokura, N.; Yasuda, T. Angew. Chem. Int. Ed. 2021, 60, 23142.
doi: 10.1002/anie.202109335 |
|
[10] |
Northey, T.; Penfold, T. J. Org. Electron. 2018, 59, 45.
doi: 10.1016/j.orgel.2018.04.038 |
[11] |
(a) Kim, J. U.; Park, I. S.; Chan, C.-Y.; Tanaka, M.; Tsuchiya, Y.; Nakanotani, H.; Adachi, C. Nat. Commun. 2020, 11, 1765.
doi: 10.1038/s41467-020-15558-5 |
(b) Hua, T.; Zhan, L.; Li, N.; Huang, Z.; Cao, X.; Xiao, Z.; Gong, S.; Zhou, C.; Zhong, C.; Yang, C. Chem. Eng. J. 2021, 426, 131169.
doi: 10.1016/j.cej.2021.131169 |
|
(c) Luo, X.; Ni, H.; Ma, H.; Qu, Z.; Wang, J.; Zheng, Y.; Zuo, J. Adv. Opt. Mater. 2022, 10, 2102513.
doi: 10.1002/adom.202102513 |
|
[12] |
Shizu, K.; Kaji, H. Commun. Chem. 2022, 5, 53.
doi: 10.1038/s42004-022-00668-6 |
[13] |
Liu, F.; Cheng, Z.; Jiang, Y.; Gao, L.; Liu, H.; Liu, H.; Feng, Z.; Lu, P.; Yang, W. Angew. Chem. Int. Ed. 2022, 61, e202116927.
|
[14] |
Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51.
doi: 10.1016/j.cplett.2004.06.011 |
[15] |
(a) Freundorfer, K.; Kats, D.; Korona, T.; Schütz, M. J. Chem. Phys. 2010, 133, 244110.
doi: 10.1063/1.3506684 |
(b) Kats, D.; Schütz, M. J. Chem. Phys. 2009, 131, 124117.
doi: 10.1063/1.3237134 |
|
(c) Kats, D.; Schütz, M. Z. Phys. Chem. 2010, 224, 601.
|
|
[16] |
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.
|
[17] |
(a) Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. WIREs Comput. Mol. Sci. 2012, 2, 242.
doi: 10.1002/wcms.82 |
(b) Werner, H.-J.; Knowles, P. J.; Manby, F. R.; Black, J. A.; Doll, K.; Heßelmann, A.; Kats, D.; Köhn, A.; Korona, T.; Kreplin, D. A.; Ma, Q.; Miller, T. F.; Mitrushchenkov, A.; Peterson, K. A.; Polyak, I.; Rauhut, G.; Sibaev, M. J. Chem. Phys. 2020, 152, 144107.
doi: 10.1063/5.0005081 |
|
[18] |
Kállay, M.; Nagy, P. R.; Mester, D.; Rolik, Z.; Samu, G.; Csontos, J.; Csóka, J.; Szabó, P. B.; Gyevi-Nagy, L.; Hégely, B.; Ladjánszki, I.; Szegedy, L.; Ladóczki, B.; Petrov, K.; Farkas, M.; Mezei, P. D.; Ganyecz, Á. J. Chem. Phys. 2020, 152, 074107.
doi: 10.1063/1.5142048 |
[19] |
(a) Shuai, Z. Chin. J. Chem. 2020, 38, 1223.
doi: 10.1002/cjoc.202000226 |
(b) Shuai, Z.; Peng, Q. Natl. Sci. Rev. 2017, 4, 224.
doi: 10.1093/nsr/nww024 |
|
(c) Shuai, Z.; Peng, Q. Phys. Rep. 2014, 537, 123.
doi: 10.1016/j.physrep.2013.12.002 |
|
[20] |
Neese, F. WIREs Comput. Mol. Sci. 2022, 12, e1606.
|
[21] |
Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
doi: 10.1063/1.464913 |
[22] |
Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615.
doi: 10.1039/b810189b |
[23] |
Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
doi: 10.1007/s00214-007-0310-x |
[1] | Guanglong Huang, Xiao-Song Xue. Computational Study on the Mechanism of Chen’s Reagent as Trifluoromethyl Source [J]. Acta Chimica Sinica, 2024, 82(2): 132-137. |
[2] | Xuefeng Liang, Jian Jing, Xin Feng, Yongze Zhao, Xinyuan Tang, Yan He, Lisheng Zhang, Huifang Li. Electronic Structure of Covalent Organic Frameworks COF66 and COF366: from Monomers to Two-Dimensional Framework [J]. Acta Chimica Sinica, 2023, 81(7): 717-724. |
[3] | Yanyan Ren, Xin Li, Yingfeng Han. Synthesis and Optical Property Studies of Blue-Light Organic Radicals Based on N-Heterocyclic Carbenes★ [J]. Acta Chimica Sinica, 2023, 81(7): 735-740. |
[4] | Huimin Chen, Long Wang, Pan Zhang, Xilin Bai, Guojun Zhou. Investigation on Photoluminescence and Mechanoluminescence of Single Tb3+-doped Intense Green Phosphor [J]. Acta Chimica Sinica, 2023, 81(7): 771-776. |
[5] | Lei Yang, Jiaoyang Ge, Fangli Wang, Wangyang Wu, Zongxiang Zheng, Hongtao Cao, Zhou Wang, Xueqin Ran, Linhai Xie. A Theoretical Study on the Effective Reduction of Internal Reorganization Energy Based on the Macrocyclic Structure of Fluorene [J]. Acta Chimica Sinica, 2023, 81(6): 613-619. |
[6] | Jie Yang, Lin Ling, Yuxue Li, Long Lu. Density Functional Theory Study on Thermal Decomposition Mechanisms of Ammonium Perchlorate [J]. Acta Chimica Sinica, 2023, 81(4): 328-337. |
[7] | Jinjing Liu, Na Yang, Li Li, Zidong Wei. Theoretical Study on the Regulation of Oxygen Reduction Mechanism by Modulating the Spatial Structure of Active Sites on Platinum★ [J]. Acta Chimica Sinica, 2023, 81(11): 1478-1485. |
[8] | Xuefei Luan, Congzhi Wang, Liangshu Xia, Weiqun Shi. Theoretical Studies on the Interaction of Uranyl with Carboxylic Acids and Oxime Ligands [J]. Acta Chimica Sinica, 2022, 80(6): 708-713. |
[9] | Luocong Wang, Zhewei Li, Caiwei Yue, Peihuan Zhang, Ming Lei, Min Pu. Theoretical Study on the Isomerization Mechanism of Azobenzene Derivatives under Electric Field [J]. Acta Chimica Sinica, 2022, 80(6): 781-787. |
[10] | Wenchao Bi, Linfeng Zhang, Jian Chen, Ruixue Tian, Hao Huang, Man Yao. Lithiation Mechanism and Performance of Monoclinic ZnP2 Anode Materials [J]. Acta Chimica Sinica, 2022, 80(6): 756-764. |
[11] | Wentao Wang, Gaochong Zhao, Liu Yang, Yicheng Zhou, Liming Ding. Study on Multimodal Color-switching Anti-counterfeiting Based on Magnetically Responsive Photonic Crystals and Quantum Dots [J]. Acta Chimica Sinica, 2022, 80(12): 1576-1582. |
[12] | Daolan Xu, Ying Yang, Wentao Fan, Zongbing He, Jiafeng Zou, Lei Feng, Man-Bo Li, Zhikun Wu. Single, Self-Born RP-Au-PR Motif Boosts 19-Fold Photoluminescence Quantum Yield of Metal Nanocluster [J]. Acta Chimica Sinica, 2022, 80(1): 1-6. |
[13] | Yinghui Wang, Simin Wei, Jinwei Duan, Kang Wang. Mechanism of Silyl Enol Ethers Hydrogenation Catalysed by Frustrated Lewis Pairs: A Theoretical Study [J]. Acta Chimica Sinica, 2021, 79(9): 1164-1172. |
[14] | Hao-Nan Qin, Zhao-Yang Wang, Shuang-Quan Zang. Photoluminescence and Electrochemical Sensing of Atomically Precise Cu13 Cluster [J]. Acta Chimica Sinica, 2021, 79(8): 1037-1041. |
[15] | Qingmin Man, Zunyun Fu, Tiantian Liu, Mingyue Zheng, Hualiang Jiang. DFT Mechanism of Cu Catalyzed Coupling Reaction to Alkyl Aryl Ethers [J]. Acta Chimica Sinica, 2021, 79(7): 948-952. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||