Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (12): 1724-1738.DOI: 10.6023/A23080370 Previous Articles     Next Articles

Review

高镍三元高比能固态锂离子电池的研究进展

张雅岚a,b,c,d, 苑志祥a,b,c, 张浩a,b,c, 张建军a,b,c,*(), 崔光磊a,b,c,*()   

  1. a 中国科学院青岛生物能源与过程研究所 青岛储能产业技术研究院 青岛 266101
    b 山东能源研究院 青岛 266101
    c 青岛新能源山东省实验室 青岛 266101
    d 中国科学院大学材料与光电研究中心 北京 100049
  • 投稿日期:2023-08-08 发布日期:2023-09-12
  • 作者简介:

    张雅岚, 中国科学院青岛生物能源与过程研究所在读硕士研究生. 主要从事原位固态化构建高性能固态聚合物电解质和固态锂电池器件的研究.

    张建军, 中国科学院青岛生物能源与过程研究所副研究员, 硕士生导师, 中国科学院青年创新促进会会员. 2011年进入中国科学院青岛生物能源与过程研究所工作, 主要研究方向是: 高电压聚合物固态锂(钠)二次电池技术及其关键材料. 主持承担国家自然科学基金面上项目2项、国家自然科学基金青年基金1项、中国科学院青年创新促进会会员人才项目1项等多个项目. 以第一(含共一)或通讯作者在Adv. Energy Mater.、Small和Energy Environ. Sci.等国际权威学术期刊发表SCI论文30篇(其中4篇入选ESI高被引论文), 总引用次数2967次. 申请美国和日本专利共2项, 获得授权欧洲专利1项; 授权中国发明专利21项, 授权中国实用新型专利3项. 获得2017年青岛市自然科学奖一等奖(第五完成人); 获得2018年山东省自然科学奖一等奖(第五完成人); 获得2021年青岛市科技进步奖一等奖(第五完成人).

    崔光磊, 中国科学院青岛生物能源与过程研究所研究员, 博士生导师, 国务院特殊津贴专家, 国家杰青和WR计划, 中国科学院深海智能技术先导专项副总工程师(固态电池基深海能源体系), 青岛市储能产业技术研究院院长, 国际聚合物电解质委员会理事. 2005年于中国科学院化学所获得有机化学博士学位, 2005年9月至2009年2月先后在德国马普协会高分子研究所和固体研究所从事博士后研究. 2009年2月起于中国科学院青岛生物能源与过程研究所工作. 2009年入选中国科学院“百人计划”(终期评估优秀), 2009年获山东省自然科学杰出青年基金资助, 2015年入选山东省“泰山学者特聘专家”, 2016年获国家自然科学杰出青年基金资助, 2018年至2021年, 十三五国家重点研发计划新能源汽车专项, 高比能固态电池项目负责人. 主要从事低成本高效能源储存与转换器件的研究. 作为负责人/课题负责人承担国家自然科学杰出青年基金、国家973计划、863计划、国家自然科学基金面上项目、省部级及中科院先导专项、企业横向项目等多项科研项目. 在Nat. Commun.、J. Am. Chem. Soc.、Angew. Chem., Int. Ed.、Adv. Mater.等发表论文300余篇, 引用2万余次, 申请国家专利210余项, 获得授权113项, 申请PCT专利7项, 获得授权欧洲专利1项, 出版《动力锂电池中聚合物关键材料》书籍一部. 获得2017年青岛市自然科学奖一等奖(第一完成人); 获得2018年山东省自然科学奖一等奖(第一完成人); 获得2021年青岛市科技进步奖一等奖(第一完成人).

  • 基金资助:
    国家自然科学基金(52073298); 国家自然科学基金(52273221); 中国科学院青年创新促进会(2020217); 江苏省高效电化学储能技术重点实验室开放课题基金(EEST2022-1)

Research Progress of High-energy-density Solid-state Lithium Ion Batteries Employing Ni-rich Ternary Cathodes

Yalan Zhanga,b,c,d, Zhixiang Yuana,b,c, Hao Zhanga,b,c, Jianjun Zhanga,b,c(), Guanglei Cuia,b,c()   

  1. a Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101
    b Shandong Energy Institute, Qingdao 266101
    c Qingdao New Energy Shandong Laboratory, Qingdao 266101
    d Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049
  • Received:2023-08-08 Published:2023-09-12
  • Contact: *E-mail: zhang_jj@qibebt.ac.cn;cuigl@qibebt.ac.cn; Tel.: 0532-80662746; Fax: 0532-80662744
  • Supported by:
    National Natural Science Foundation of China(52073298); National Natural Science Foundation of China(52273221); Youth Innovation Promotion Association of Chinese Academy of Sciences(2020217); Open Fund of Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies(EEST2022-1)

To achieve carbon peaking and carbon neutrality goals, increasing the share of non-fossil energy consumption and accelerating the growth of clean, low-carbon and sustainable energy are highly desirable in developing a clean and diversified energy supply system. In this retrospect, new energy vehicles have become an ideal substitute for the traditional fuel vehicles due to their green, low-carbon, clean and sustainable characteristics, and have promising development in the future transportation industry. However, the continuously increasing demand for longer range and safety performance in electric vehicles has challenged the state-of-the-art liquid-state lithium-ion batteries. At present, the conventional lithium-ion batteries based on the traditional carbonate liquid-state electrolyte face many potential safety issues, such as leakage, volatility, combustion and explosion. In addition, their energy density reaches closely to their theoretical upper limit. Therefore, breakthroughs in battery storage technologies are urgently needed. Solid-state lithium-ion batteries, which are built with solid-state electrolytes and Ni-rich cathodes/graphite (or silicon-carbon) electrodes are the most promising battery technologies combining high energy density and improved safety property. An in-depth literature survey shows that considerable progress in the construction of high safety, high energy density Ni-rich cathodes/graphite (or silicon-carbon) solid-state lithium-ion batteries have been achieved recently. Hence, this review mainly summarizes the research progress and the development of Ni-rich cathodes/graphite (or silicon-carbon) solid-state lithium-ion batteries using inorganic solid electrolytes and polymer solid electrolytes. Moreover, the remaining challenges and future development trends of Ni-rich cathodes/graphite (or silicon-carbon) solid-state lithium-ion batteries are also discussed and presented. It is expected that the current review would contribute to the further research and development of Ni-rich cathodes/graphite (or silicon-carbon) solid-state lithium-ion batteries.

Key words: high-safety lithium-ion battery, Ni-rich ternary cathodes, graphite (or silicon-carbon composite anodes), solid- state electrolyte, interfacial chemistry