Acta Chimica Sinica ›› 2024, Vol. 82 ›› Issue (4): 387-395.DOI: 10.6023/A23100473 Previous Articles Next Articles
Original article
投稿日期:
2023-10-27
发布日期:
2024-01-05
基金资助:
Junqing Li, Qianxi Song, Ziyi Liu, Dongqi Wang*()
Received:
2023-10-27
Published:
2024-01-05
Contact:
* E-mail: Supported by:
Share
Junqing Li, Qianxi Song, Ziyi Liu, Dongqi Wang. Machine Learning for Predicting Band Gap in Boron-containing Materials[J]. Acta Chimica Sinica, 2024, 82(4): 387-395.
Features | Descriptions |
---|---|
total magnetization | total magnetizing strength of the material |
dens | density of the material |
energy | energy of the material |
energy per atom | atomic energy per unit of energy |
formation energy per atom | unit atomic formation energy |
e above hull | phase stability energy (difference in energy between new phase and equilibrium phase) |
minimum Number | minimum atomic number |
minimum Mendeleev Number | minimum value of Mendeleev number of elements in compounds |
maximum Melting T | compound melting temperature maximum |
maximum Nd Valence | maximum number of d-valence orbitals filled |
mean Np Unfilled | mean number of unfilled p-valence orbitals |
maximum Nd Unfilled | maximum number of unfilled d-valence orbitals |
maximum Nf Unfilled | maximum number of unfilled f-valence orbits |
maximum Space Group Number | maximum space group of the ground state structure at 0 K |
minimum oxidation state | minimum oxidation state |
Features | Descriptions |
---|---|
total magnetization | total magnetizing strength of the material |
dens | density of the material |
energy | energy of the material |
energy per atom | atomic energy per unit of energy |
formation energy per atom | unit atomic formation energy |
e above hull | phase stability energy (difference in energy between new phase and equilibrium phase) |
minimum Number | minimum atomic number |
minimum Mendeleev Number | minimum value of Mendeleev number of elements in compounds |
maximum Melting T | compound melting temperature maximum |
maximum Nd Valence | maximum number of d-valence orbitals filled |
mean Np Unfilled | mean number of unfilled p-valence orbitals |
maximum Nd Unfilled | maximum number of unfilled d-valence orbitals |
maximum Nf Unfilled | maximum number of unfilled f-valence orbits |
maximum Space Group Number | maximum space group of the ground state structure at 0 K |
minimum oxidation state | minimum oxidation state |
Models | 145 features | 15 features | ||||
---|---|---|---|---|---|---|
MAE | MSE | R2 | MAE | MSE | R2 | |
Lasso | 1.24 | 2.38 | 0.31 | 1.38 | 2.65 | 0.20 |
Bayesian Ridge | 0.87 | 1.48 | 0.57 | 1.10 | 1.96 | 0.41 |
Elastic Net | 1.17 | 2.18 | 0.37 | 1.34 | 2.57 | 0.22 |
Support Vector Regression | 1.38 | 2.92 | 0.15 | 1.50 | 3.25 | 0.02 |
Decision Tree Regression | 0.67 | 1.22 | 0.65 | 0.65 | 1.02 | 0.69 |
Gradient Boosting Regression | 0.58 | 0.66 | 0.81 | 0.61 | 0.70 | 0.79 |
AdaBoost Regression | 0.91 | 1.21 | 0.65 | 0.89 | 1.22 | 0.63 |
Random Forest Regression | 0.51 | 0.58 | 0.83 | 0.51 | 0.57 | 0.84 |
Extra Tree Regression | 0.67 | 1.20 | 0.65 | 0.63 | 1.07 | 0.68 |
Models | 145 features | 15 features | ||||
---|---|---|---|---|---|---|
MAE | MSE | R2 | MAE | MSE | R2 | |
Lasso | 1.24 | 2.38 | 0.31 | 1.38 | 2.65 | 0.20 |
Bayesian Ridge | 0.87 | 1.48 | 0.57 | 1.10 | 1.96 | 0.41 |
Elastic Net | 1.17 | 2.18 | 0.37 | 1.34 | 2.57 | 0.22 |
Support Vector Regression | 1.38 | 2.92 | 0.15 | 1.50 | 3.25 | 0.02 |
Decision Tree Regression | 0.67 | 1.22 | 0.65 | 0.65 | 1.02 | 0.69 |
Gradient Boosting Regression | 0.58 | 0.66 | 0.81 | 0.61 | 0.70 | 0.79 |
AdaBoost Regression | 0.91 | 1.21 | 0.65 | 0.89 | 1.22 | 0.63 |
Random Forest Regression | 0.51 | 0.58 | 0.83 | 0.51 | 0.57 | 0.84 |
Extra Tree Regression | 0.67 | 1.20 | 0.65 | 0.63 | 1.07 | 0.68 |
Models | Number of elemental species | ||||||
---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | |
Linear Regression | 0.42 | 0.44 | 0.46 | 0.26 | 0.33 | –0.01 | –2.15 |
Lasso | –0.07 | 0.16 | 0.23 | –0.06 | 0.05 | –1.14 | –1.2 |
Bayesian Ridge | 0.42 | 0.45 | 0.46 | 0.25 | 0.33 | 0 | –2.09 |
Elastic Net | –0.11 | 0.2 | 0.28 | –0.1 | 0.1 | –1.52 | –0.83 |
Support Vector Regression | –0.14 | 0.02 | 0.01 | –0.18 | –0.25 | –0.72 | –1.43 |
Decision Tree Regression | 0.55 | 0.76 | 0.78 | 0.47 | 0.5 | 0.6 | –4.75 |
Gradient Boosting Regression | 0.64 | 0.81 | 0.81 | 0.73 | 0.57 | 0.07 | –2.48 |
AdaBoost Regression | 0.45 | 0.62 | 0.66 | 0.53 | 0.43 | –0.65 | –2.65 |
Random Forest Regression | 0.72 | 0.84 | 0.86 | 0.73 | 0.68 | 0.37 | –1.9 |
Extra Tree Regression | 0.25 | 0.77 | 0.63 | 0.42 | –0.29 | 0.84 | –0.46 |
Models | Number of elemental species | ||||||
---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 8 | |
Linear Regression | 0.42 | 0.44 | 0.46 | 0.26 | 0.33 | –0.01 | –2.15 |
Lasso | –0.07 | 0.16 | 0.23 | –0.06 | 0.05 | –1.14 | –1.2 |
Bayesian Ridge | 0.42 | 0.45 | 0.46 | 0.25 | 0.33 | 0 | –2.09 |
Elastic Net | –0.11 | 0.2 | 0.28 | –0.1 | 0.1 | –1.52 | –0.83 |
Support Vector Regression | –0.14 | 0.02 | 0.01 | –0.18 | –0.25 | –0.72 | –1.43 |
Decision Tree Regression | 0.55 | 0.76 | 0.78 | 0.47 | 0.5 | 0.6 | –4.75 |
Gradient Boosting Regression | 0.64 | 0.81 | 0.81 | 0.73 | 0.57 | 0.07 | –2.48 |
AdaBoost Regression | 0.45 | 0.62 | 0.66 | 0.53 | 0.43 | –0.65 | –2.65 |
Random Forest Regression | 0.72 | 0.84 | 0.86 | 0.73 | 0.68 | 0.37 | –1.9 |
Extra Tree Regression | 0.25 | 0.77 | 0.63 | 0.42 | –0.29 | 0.84 | –0.46 |
[1] |
Fujimori, M.; Nakata, T.; Nakayama, T.; Nishibori, E.; Kimura, K.; Takata, M.; Sakata, M. Phys. Rev. Lett. 1999, 82, 4452.
doi: 10.1103/PhysRevLett.82.4452 |
[2] |
Shen, Y. F.; Xu, C.; Huang, M.; Wang, H. Y.; Cheng, L. J. Prog. Chem. 2016, 28, 1601. (in Chinese)
|
(沈艳芳, 徐畅, 黄敏, 王海燕, 程龙玖, 化学进展, 2016, 28, 1601.)
doi: 10.7536/PC160533 |
|
[3] |
Yang, X. Q.; Hu, Y.; Zhang, J. L.; Wang, Y. Q.; Pei, C. M.; Liu, F. Acta Physica Sinica 2014, 63, 048102. (in Chinese)
doi: 10.7498/aps |
(杨秀清, 胡亦, 张景路, 王艳秋, 裴春梅, 刘飞, 物理学报, 2014, 63, 048102.)
|
|
[4] |
Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. Rev. B 1994, 49, 5081.
pmid: 10011453 |
[5] |
Feng, B.; Zhang, J.; Zhong, Q.; Li, W.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. Nat. Chem. 2016, 8, 563.
doi: 10.1038/nchem.2491 |
[6] |
Li, P.; Zhang, X.; Wang, J.; Xue, Y.; Yao, Y.; Chai, S.; Zhou, B.; Wang, X.; Zheng, N.; Yao, J. J. Am. Chem. Soc. 2022, 144, 5930.
doi: 10.1021/jacs.1c13563 |
[7] |
Hao, K. R.; Yan, Q. B.; Su, G. Phys. Chem. Chem. Phys. 2020, 22, 709.
doi: 10.1039/C9CP05318B |
[8] |
Cheng, Z. S.; Zhang, X. M.; Zhang, H.; Liu, H. Y.; Yu, X.; Dai, X. F.; Liu, G. D.; Chen, G. F. J. Phys. Chem. C 2022, 126, 21542.
doi: 10.1021/acs.jpcc.2c06346 |
[9] |
Zhan, C.; Zhang, P. F.; Dai, S.; Jiang, D. E. ACS Energy Lett. 2016, 1, 1241.
doi: 10.1021/acsenergylett.6b00483 |
[10] |
Qiu, B.; Lu, W. D.; Gao, X. Q.; Sheng, J.; Ji, M.; Wang, D. Q.; Lu, A. H. J. Catal. 2023, 417, 14.
doi: 10.1016/j.jcat.2022.11.031 |
[11] |
Grant, J. T.; Carrero, C. A.; Goeltl, F.; Venegas, J.; Mueller, P.; Burt, S. P.; Specht, S. E.; Mcdermott, W. P.; Chieregato, A.; Hermans, I. Science 2016, 354, 1570.
doi: 10.1126/science.aaf7885 pmid: 27934702 |
[12] |
Lu, X.; Li, K.; Xie, Y.; Qi, S.; Shen, Q.; Yu, J.; Huang, L.; Zheng, X. J. Biomed. Mater. Res. Part A 2019, 107, 12.
doi: 10.1002/jbm.a.v107.1 |
[13] |
Liu, L.; Zhao, Z.; Yu, T.; Zhang, S.; Lin, J.; Yang, G. J. Phys. Chem. C 2018, 122, 6801.
doi: 10.1021/acs.jpcc.8b00252 |
[14] |
Gao, Y.; Ma, Y. J. Phys. Chem. C 2019, 123, 23145.
doi: 10.1021/acs.jpcc.9b03599 |
[15] |
Tian, X. X.; Xuan, X. Y.; Yu, M.; Mu, Y. W.; Lu, H. G.; Zhang, Z. H.; Li, S. D. Nanoscale 2019, 11, 11099.
doi: 10.1039/C9NR02681A |
[16] |
Xu, L.; Wang, A.; Li, B.; Zhao, J.; Zeng, H.; Zhang, S. J. Phys. Chem. Lett. 2022, 13, 6455.
doi: 10.1021/acs.jpclett.2c01882 |
[17] |
Yun, J.; Zhang, Y.; Xu, M.; Yan, J.; Zhao, W.; Zhang, Z. J. Mater. Sci. 2017, 52, 10294.
doi: 10.1007/s10853-017-1233-0 |
[18] |
Xu, J.; Wan, Q.; Anpo, M.; Lin, S. J. Phys. Chem. C 2020, 124, 6624.
doi: 10.1021/acs.jpcc.9b11385 |
[19] |
Chung, H. Y.; Weinberger, M. B.; Levine, J. B.; Cumberland, R. W.; Kavner, A.; Yang, J. M.; Tolbert, S. H.; Kaner, R. B. Science 2007, 316, 436.
doi: 10.1126/science.1139322 |
[20] |
Yao, Y.; Zhang, Z.; Jiao, L. Energy Environ. Mater. 2021, 5, 470.
doi: 10.1002/eem2.v5.2 |
[21] |
Gabani, S.; Flachbart, K.; Siemensmeyer, K.; Mori, T. J. Alloys Compd. 2020, 821, 153201.
doi: 10.1016/j.jallcom.2019.153201 |
[22] |
Yan, X.; Jin, Q.; Jiang, Y.; Yao, T.; Li, X.; Tao, A.; Gao, C.; Chen, C.; Ma, X.; Ye, H. ACS Appl. Mater. Interfaces 2022, 14, 36875.
doi: 10.1021/acsami.2c10143 |
[23] |
Curtarolo, S.; Hart, G. L. W.; Nardelli, M. B.; Mingo, N.; Sanvito, S.; Levy, O. Nat. Mater. 2013, 12, 191.
doi: 10.1038/nmat3568 pmid: 23422720 |
[24] |
Draxl, C.; Scheffler, M. J. Phys. Mater 2019, 2, 036001.
doi: 10.1088/2515-7639/ab13bb |
[25] |
Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. APL Mater. 2013, 1, 011002.
doi: 10.1063/1.4812323 |
[26] |
Mehl, M. J.; Hicks, D.; Toher, C.; Levy, O.; Hanson, R. M.; Hart, G.; Curtarolo, S. Comput. Mater. Sci. 2017, 136, S1-S828.
doi: 10.1016/j.commatsci.2017.01.017 |
[27] |
De Pablo, J. J.; Jackson, N. E.; Webb, M. A.; Chen, L.-Q.; Moore, J. E.; Morgan, D.; Jacobs, R.; Pollock, T.; Schlom, D. G.; Toberer, E. S.; Analytis, J.; Dabo, I.; Delongchamp, D. M.; Fiete, G. A.; Grason, G. M.; Hautier, G.; Mo, Y.; Rajan, K.; Reed, E. J.; Rodriguez, E.; Stevanovic, V.; Suntivich, J.; Thornton, K.; Zhao, J.-C. npj Comput. Mater. 2019, 5, 41.
doi: 10.1038/s41524-019-0173-4 |
[28] |
Hansen, K.; Montavon, G.; Biegler, F.; Fazli, S.; Rupp, M.; Scheffler, M.; Von Lilienfeld, O. A.; Tkatchenko, A.; Müller, K.-R. J. Chem. Theory Comput. 2013, 9, 3404.
doi: 10.1021/ct400195d pmid: 26584096 |
[29] |
Wei, X. H.; Zhou, C. B.; Shen, X. X.; Liu, Y. Y.; Tong, Q. C. Journal of Jilin University (Engineering and Technology Edition), 2021, 51, 667. (in Chinese)
|
(魏晓辉, 周长宝, 沈笑先, 刘圆圆, 童群超, 吉林大学学报(工学版), 2021, 51, 667.)
|
|
[30] |
Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. Comput. Phys. Commun. 2012, 183, 2063.
doi: 10.1016/j.cpc.2012.05.008 |
[31] |
Huang, Y.; Yu, C.; Chen, W.; Liu, Y.; Li, C.; Niu, C.; Wang, F.; Jia, Y. J. Mater. Chem. C 2019, 7, 3238.
doi: 10.1039/c8tc05554h |
[32] |
Dey, P.; Bible, J.; Datta, S.; Broderick, S.; Jasinski, J.; Sunkara, M.; Menon, M.; Rajan, K. Comput. Mater. Sci. 2014, 83, 185.
doi: 10.1016/j.commatsci.2013.10.016 |
[33] |
Xu, Y. L.; Wang, X. M.; Li, X.; Xi, L. L.; Ni, J. Y.; Zhu, W. H.; Zhang, W.; Yang, J. Sci. Sin. Tech. 2019, 49, 44. (in Chinese)
doi: 10.1360/N092018-00202 |
(徐永林, 王香蒙, 李鑫, 席丽丽, 倪剑樾, 朱文浩, 张武, 杨炯, 中国科学:技术科学, 2019, 49, 44.)
|
|
[34] |
Ong, S. P.; Richards, W. D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V. L.; Persson, K. A.; Ceder, G. Comput. Mater. Sci. 2013, 68, 314.
doi: 10.1016/j.commatsci.2012.10.028 |
[35] |
Hauke, J.; Kossowski, T. Quaest. Geogr. 2011, 30, 87.
|
[36] |
Lundberg, S. M.; Erion, G.; Chen, H. Nat. Mach. Intell. 2020, (2), 56.
|
[37] |
Ward, L.; Dunn, A.; Faghaninia, A.; Zimmermann, N. E. R.; Bajaj, S.; Wang, Q.; Montoya, J.; Chen, J.; Bystrom, K.; Dylla, M.; Chard, K.; Asta, M.; Persson, K. A.; Snyder, G. J.; Foster, I.; Jain, A. Comput. Mater. Sci. 2018, 152, 60.
doi: 10.1016/j.commatsci.2018.05.018 |
[38] |
Ward, L.; Agrawal, A.; Choudhary, A.; Wolverton, C. npj Comput. Mater. 2016, 2, 16028.
doi: 10.1038/npjcompumats.2016.28 |
[1] | Xingyi Qi, Yaofeng Hu, Ruoyu Wang, Yaqing Yang, Yufei Zhao. Recent Advance of Machine Learning in Selecting New Materials [J]. Acta Chimica Sinica, 2023, 81(2): 158-174. |
[2] | Yizhi Han, Jianhui Lan, Xue Liu, Weiqun Shi. Advances in Molecular Dynamics Studies of Molten Salts Based on Machine Learning [J]. Acta Chimica Sinica, 2023, 81(11): 1663-1672. |
[3] | Min Cheng, Shihui Wang, Lei Luo, Li Zhou, Kexin Bi, Yiyang Dai, Xu Ji. Large-Scale Computational Screening of Metal-Organic Framework Membranes for Ethane/Ethylene Separation [J]. Acta Chimica Sinica, 2022, 80(9): 1277-1288. |
[4] | Yuze Liu, Kunhua Li, Jiaxing Huang, Xi Yu, Wenping Hu. Accurate Prediction of the Boiling Point of Organic Molecules by Multi-Component Heterogeneous Learning Model [J]. Acta Chimica Sinica, 2022, 80(6): 714-723. |
[5] | Shihui Wang, Xiaoyu Xue, Min Cheng, Shaochen Chen, Chong Liu, Li Zhou, Kexin Bi, Xu Ji. High-Throughput Computational Screening of Metal-Organic Frameworks for CH4/H2 Separation by Synergizing Machine Learning and Molecular Simulation [J]. Acta Chimica Sinica, 2022, 80(5): 614-624. |
[6] | Cai Chengzhi, Li Lifeng, Deng Xiaomei, Li Shuhua, Liang Hong, Qiao Zhiwei. Machine Learning and High-throughput Computational Screening of Metal-organic Framework for Separation of Methane/ethane/propane [J]. Acta Chimica Sinica, 2020, 78(5): 427-436. |
[7] | Zhu Boyang, Wu Ruilong, Yu Xi. Artificial Intelligence for Contemporary Chemistry Research [J]. Acta Chimica Sinica, 2020, 78(12): 1366-1382. |
[8] | Liu Zhilu, Li Wei, Liu Hao, Zhuang Xudong, Li Song. Research Progress of High-throughput Computational Screening of Metal-Organic Frameworks [J]. Acta Chim. Sinica, 2019, 77(4): 323-339. |
[9] | Yang Rui, Cai Xuediao, Ding Liming. Synthesis and Characterization of Orange 3 Derivatives as Photoelectric Materials [J]. Acta Chim. Sinica, 2015, 73(3): 281-288. |
[10] | Zhao Lingling, Jiu Yuanda, Wang Jianyun, Zhang Xinwen, Lai Wenyong, Huang Wei . Synthesis and Characterization of Starburst Conjugated Molecules with Multiple p-n Branches for Narrow Band Gap Modulation [J]. Acta Chimica Sinica, 2013, 71(9): 1248-1256. |
[11] | Han Guozhi, Zhu Shen, Wu Shengrong, Pang Fengfei. Preparation of Tunable Photonic Crystal Based on Cholesteric Liquid Crystal [J]. Acta Chimica Sinica, 2012, 70(17): 1827-1830. |
[12] | XIANG Dong-Hu, ZHU Ya-Bo, LUO Jin, GUO Li-Tong. Synthesis of CdTe Micro-crystal Rods by Composite- hydroxide-mediated Method [J]. Acta Chimica Sinica, 2011, 69(13): 1540-1544. |
[13] | Mang Wang. Photo-induced Charge Transfer in the Composites Based on Naphthalocyanine Zinc [J]. Acta Chimica Sinica, 2008, 66(19): 2163-2169. |
[14] |
KANG, Kai *,a,b HUANG, Shi-Hua a,b FENG, Ying a,b DONG, Li-Qiang a,b ZHU, Lin-Ai-Yi a,b . Fabrication of Colloidal Photonic Crystals by a Micro-cell Based on Al Thin Film [J]. Acta Chimica Sinica, 2008, 66(14): 1615-1619. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||