Acta Chimica Sinica ›› 2024, Vol. 82 ›› Issue (6): 677-689.DOI: 10.6023/A24030075 Previous Articles     Next Articles

Review

DNA纳米花生物医学研究进展概述

王丹钰a, 郭子涵a, 郭梦珂a, 易桦a, 黄梦雨a, 段捷a, 张开翔a,b,*()   

  1. a 郑州大学药学院 郑州 450001
    b 河南省肿瘤重大疾病靶向治疗与诊断重点实验室 郑州 450001
  • 投稿日期:2024-03-08 发布日期:2024-04-28
  • 作者简介:
    王丹钰, 郑州大学药学院2021级药学专业博士研究生. 以第一作者在Nat. Commun., ACS Nano, Small, Adv. Healthcare Mater.及ACS Appl. Mater. Interfaces期刊发表研究论文5篇, 累计发表SCI收录论文10篇, 被引180余次, 参与多项国家自然科学基金项目.
    张开翔, 郑州大学药学院教授, 博士生导师. 以第一作者或通讯作者在Nat. Commun., Sci. Adv., J. Am. Chem. Soc., Angew. Chem., Int. Ed., Adv. Mater.Chem. Soc. Rev.等期刊发表研究论文50余篇, 累计发表SCI收录论文100余篇, 被引5000余次, 作为项目负责人承担国家自然科学基金项目4项.
  • 基金资助:
    国家自然科学基金(22122409); 国家自然科学基金(22377110); 河南省优势学科培育基金(222301420019)

Overview of Advances in DNA Nanoflower Biomedical Research

Danyu Wanga, Zihan Guoa, Mengke Guoa, Hua Yia, Mengyu Huanga, Jie Duana, Kaixiang Zhanga,b,*()   

  1. a School of Pharmacy, Zhengzhou University, Zhengzhou 450001
    b Henan Provincial Key Laboratory of Targeted Therapy and Diagnosis of Major Tumor Diseases, Zhengzhou 450001
  • Received:2024-03-08 Published:2024-04-28
  • Contact: * E-mail: zhangkx@zzu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22122409); National Natural Science Foundation of China(22377110); Henan Province Advantage Discipline Cultivation Fund(222301420019)

DNA nanostructures show great potential for biomedical applications due to their programmability, autonomous design and good biocompatibility. DNA nanoflower (DNF), as a unique DNA-organic inorganic hybrid nanostructure, has attracted considerable attention within recent years. Its mineralized inorganic core not only helps to maintain the stability of DNA, but also provides an auxiliary mineralization function of metal ions. Among them, DNFs can efficiently load functional molecules such as drugs, fluorescent probes, enzymes, nucleic acid aptamers, and so on, by virtue of their high-density nucleic acid sequences and good loading capacity. In addition, the size of the nanoparticles can be adjusted by controlling the reaction conditions, which is suitable for high permeability and long retention effects in different physiological environments, and thus applied in many fields of biomedicine. In this paper, the synthesis and biomedical applications of DNF are reviewed. Firstly, the main synthesis methods of DNF, rolling circle amplification (RCA) as well as salt aging method, are firstly introduced in detail, and different reaction conditions including enzymes, reaction time, temperature, pH, etc., the synthesis of DNF with different cationic metal cores or modification of DNF by different substances are highlighted for the functional as well as structural alteration of DNF, which can adapt the DNF to the applications in various scenarios. Secondly, the biomedical applications of DNF, including the latest research progress in bio-detection, bio-imaging and drug therapy, are demonstrated. Due to the unique physicochemical properties of DNF, including good biocompatibility, biodegradability, and structural and functional diversities, DNF has become a kind of nucleic acid nanomaterials with great potentials for applications. Finally, the prospects for the application of DNF and the current challenges are summarized, and great hopes are placed on researchers to explore the understanding of the formation mechanism and function of DNF as well as the applied research of metal salt cores to effectively promote the development of DNF-based biomedicine.

Key words: DNA nanoflower, bio-detection, bio-imaging, drug therapy