Acta Chimica Sinica ›› 2025, Vol. 83 ›› Issue (9): 1103-1118.DOI: 10.6023/A25050157 Previous Articles    

Review

强韧化聚合物网络的结构设计策略

王源浩, 张照明*(), 颜徐州*()   

  1. 化学生物协同物质创制全国重点实验室 上海交通大学化学化工学院 教育部变革性分子前沿科学中心 上海 200240
  • 投稿日期:2025-05-11 发布日期:2025-07-07
  • 作者简介:
    王源浩, 博士生, 就读于上海交通大学化学化工学院, 主要研究方向为机械互锁聚合物的制备和构效关系研究.
    张照明, 2019年在日本北海道大学获得博士学位, 随后加入上海交通大学, 先后担任博士后、助理研究员及副研究员等职. 研究领域聚焦超分子聚合物、机械互锁聚合物及智能高分子材料的开发与应用. 以(共同)第一或通讯作者发表J. Am. Chem. Soc.、Nat. Commun.、Angew. Chem. Int. Ed.、Acc. Chem. Res.等学术论文34篇, 论文引用1600余次. 主持国家自然科学基金面上项目、青年项目在内的5项科研项目.
    颜徐州, 上海交通大学化学化工学院研究员, 博士生导师. 2014年获得浙江大学博士学位, 2014~2018年分别在美国犹他大学和斯坦福大学从事博士后研究, 2018年9月入职上海交通大学开展独立研究工作. 入选上海市高校特聘教授(东方学者, 2018)和曙光学者(2022)计划, 2021年获得国家自然科学基金优秀青年科学基金资助. 主要研究方向为机械互锁聚合物和动态高分子材料.

    “中国青年化学家”专辑.

  • 基金资助:
    国家自然科学基金(22471164); 国家自然科学基金(22475128); 国家自然科学基金(52421006); 聚烯烃催化技术与高性能材料全国重点实验室、上海市聚烯烃催化技术重点实验室资助(SKL-LCTP-202301)

Strategies for Structural Design in Strengthening and Toughening Polymer Networks

Yuanhao Wang, Zhaoming Zhang*(), Xuzhou Yan*()   

  1. State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2025-05-11 Published:2025-07-07
  • Contact: * E-mail: zhangzhaoming@sjtu.edu.cn;xzyan@sjtu.edu.cn
  • About author:

    For the VSI “Rising Stars in Chemistry”.

  • Supported by:
    National Natural Science Foundation of China(22471164); National Natural Science Foundation of China(22475128); National Natural Science Foundation of China(52421006); State Key Laboratory of Polyolefins and Catalysis and Shanghai Key Laboratory of Catalysis Technology for Polyolefins(SKL-LCTP-202301)

Polymer materials play a crucial role in modern industry and technology due to their versatile properties and broad range of applications. However, conventional industrial modification strategies often suffer from an inherent inability to finely tune the balance between strength and toughness, thereby constraining their utility in high-performance applications. To address this challenge, researchers have focused on optimizing the internal structure of polymers as a means to regulate their macroscopic mechanical behavior. Among various strategies, network structure design has emerged as a particularly effective approach. This review takes network structure as a central theme and categorizes the mechanisms of polymer modification based on their energy dissipation pathways. Six major mechanisms are discussed: hydrogen bonding, coordination interactions, host-guest interactions, force-sensitive groups, mechanically interlocked structures, and other reinforcing effects. For each category, we provide overview of recent representative and innovative studies. Through detailed structural analysis and performance evaluation, we highlight how different pathways contribute to the enhancement of mechanical properties. These special structures markedly enhance the material's ability to dissipate energy upon external force. This improvement arises primarily through three synergistic pathways: (1) the reversible breaking and reformation of sacrificial bonds, which serve to absorb and redistribute applied stress; (2) energy dissipation via molecular mobility and chain segmental friction; and (3) multiscale mechanisms of stress transfer and dispersion, which effectively mitigate stress concentration and delay failure. Finally, based on the current research, we identify key unresolved questions and major challenges that must be addressed to further advance the mechanical performance of polymer materials. Looking ahead, the development of next-generation high-performance polymers is expected to converge on several critical directions: achieving sustainability in material sourcing and processing, the combination of high elasticity and high toughness, reducing economic costs, and deepening the multiscale understanding of structure-property relationships. These avenues will be pivotal in guiding the rational design of polymer systems for future technological demands.

Key words: dynamic polymer materials, mechanical adaptability, non-covalent interaction, mechanically interlocked structure, energy dissipation