Full Papers

Mechanism of Hydrocarbon Generation from Sodium Stearate Decarboxylation by Microwave Assisted Pyrolysis

  • WANG Yun-Pu ,
  • LIU Yu-Huan ,
  • RUAN Rong-Sheng ,
  • WAN Yi-Qin ,
  • ZHANG Jin-Sheng ,
  • PENG Hong
Expand
  • a. Nanchang University, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang 330047;
    b. Nanchang University, State Key Laboratory of Food Science and Technology, Nanchang 330047

Received date: 2011-09-25

  Revised date: 2011-11-30

  Online published: 2012-02-25

Supported by

Project supported by International Cooperation of Jiangxi Province (No.20101208);International Science & Technology Cooperation Program of China (No.2010DFB63750);Natural Science Foundation of Jiangxi Province (No.2008GZH0047);Jiangxi Province Department of Science and Technology (No.2007BN12100);National Natural Science Foundation of China (No.30960304);State Forestry Administration;P. R. China (No.9482010-4-09) and State Key Laboratory of Food Science and Technology (Nos.SKLF-TS-201111;KLF-TS-200814).

Abstract

Renewable hydrocarbon fuel have significant advantage to biodiesel (fatty acid methyl ester). The purpose of present study was to explore decarboxylation mechanism of fatty acid sodium salt with microwave radiation. Sodium stearate (C18) was chosen as a model compound, the carboxy-terminal of this dipolar molecular was further polarized with microwave radiation. The Lorentz force of ions or dipolar molecules were moved in accordance with the way of electromagnetic waves, contributing to the formation of carbanion, which effectively promote the decarboxylation reaction. Glycerol possessing high dielectric constant were added which formed a “high-temperature locus” that lowed the activation energy of decarboxylation reaction and played a role as the hydrogen donor. The liquid products were analysed and the results showed C8~C20 n-alkanes and n-alk-1-enes were arranged regularly which complied with the law of hydrocarbon pyrolysis. All the work proved the feasibility of deriving renewable hydrocarbon fuel from fatty acid sodium salt by microwave pyrolysis.

Cite this article

WANG Yun-Pu , LIU Yu-Huan , RUAN Rong-Sheng , WAN Yi-Qin , ZHANG Jin-Sheng , PENG Hong . Mechanism of Hydrocarbon Generation from Sodium Stearate Decarboxylation by Microwave Assisted Pyrolysis[J]. Acta Chimica Sinica, 2012 , 70(02) : 114 -120 . DOI: 10.6023/A1109252

References

1 Berenblyum, A. S.; Danyushevsky, V. Y.; Katsman, E. A.; Podoplelova, T. A.; Flid, V. R. Petroleum Chem. 2010, 50, 305.  

2 Carioca, J. O. B.; Hiluy Filho, J. J.; Leal, M. R. L. V.; Macambira, F. S. Biotechnol. Adv. 2009, 27, 1043.  

3 Demirbas, A. Appl. Energy 2011, 88, 17.  

4 Lestari, S.; Maki-Arvela, P.; Simakova, I.; Beltramini, J.; Max Lu, G. Q.; Murzin, D. Y. Catal. Lett. 2009, 130, 48.  

5 Smith, B.; Greenwell, H. C.; Whiting, A. Energ. Environ. Sci. 2008, 2, 262.

6 Immer, J. G.; Kelly, M. J.; Lamb, H. H. Appl. Catal., A 2010, 375, 134.  

7 Lestari, S.; Maki-Arvela, P.; Eranen, K.; Beltramini, J.; Lu, G. Q. M.; Murzin, D. Y. Catal. Lett. 2010, 134, 250.  

8 Madsen, A. T.; Rozmyslowicz, B.; Simakova, I. L.; Kilpio, T.; Leino, A. R.; Kordas, K.; Eranen, K.; Maki-Arvela, P.; Murzin, D. Y. Ind. Eng. Chem. Res. 2011, 50, 11049.  

9 Maki-Arvela, P.; Kubickova, I.; Snare, M.; Eranen, K.; Murzin, D. Y. Energ. Fuels 2007, 21, 30.  

10 Simakova, I.; Rozmyslowicz, B.; Simakova, O.; Maki-Arvela, P.; Simakov, A.; Murzin, D. Y. Top Catal. 2011, 54, 460.  

11 Lestari, S.; Simakova, I.; Tokarev, A.; Maki-Arvela, P.; Eranen, K.; Murzin, D. Y. Catal. Lett. 2008, 122, 247.  

12 Kossiakoff, A.; Rice, F. O. J. Am. Chem. Soc. 1943, 65, 590.  

13 Fu, J.; Lu, X. Y.; Savage, P. E. Energ. Environ. Sci. 2010, 3, 311.  

14 Snare, M.; Kubickova, I.; Maki-Arvela, P.; Eranen, K.; Warna, J.; Murzin, D. Y. Chem. Eng. J. 2007, 134, 29.

15 Lappi, H.; Alen, R. J. Anal. Appl. Pyrolysis 2009, 86, 274.  

16 Wan, Y. Q.; Chen, P.; Zhang, B.; Yang, C. Y.; Liu, Y. H.; Lin, X. Y.; Ruan, R. J. Anal. Appl. Pyrolysis 2009, 86, 161.  

17 Moen, J.; Yang, C. Y.; Zhang, B.; Lei, H. W.; Hennessy, K.; Wan, Y. Q.; Le, Z. P.; Liu, Y. H.; Chen, P.; Ruan, R. Int. J. Agric. Biol. Eng. 2009, 2, 70.

18 Zhao, X. Q.; Song, Z. L.; Liu, H. Z.; Li, Z. Q.; Li, L. Z.; Ma, C. Y. J. Anal. Appl. Pyrolysis 2010, 89, 87.  

19 Budarin, V. L.; Clark, J. H.; Lanigan, B. A.; Shuttleworth, P.; Macquarrie, D. J. Bioresour. Technol. 2009, 101,3776.

20 Gong, Y.; Lin, L.; Sun, Y.; Pang, C.-S. Chem. Bioeng. 2008, 25, 1 (in Chinese). (龚艳, 林鹿, 孙勇, 庞春生, 化学与生物工程, 2008, 25,1.)

21 Horikoshi, S.; Serpone, N. Mini-Rev. Org. Chem. 2011, 8,299.  

22 Maher, K. D.; Kirkwood, K. M.; Gray, M. R.; Bressler, D. C. Ind. Eng. Chem. Fundam. 2008, 47, 5328.
Outlines

/