Review

Development of Dehydrogenation Catalyst for Reversible Hydrogen Storage in Organic Hydrides

  • Qi Suitao ,
  • Huang Jun ,
  • Chen Hao ,
  • Gao Zifeng ,
  • Yi Chunhai ,
  • Yang Bolun
Expand
  • Department of Chemical Engineering, School of Chemical Engineering, Xi’an Jiaotong University, Xi’an 710049

Received date: 2012-08-30

  Online published: 2012-12-03

Supported by

Project supported by the National Natural Science Foundation of China (No. 21006076), Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20110201130002) and Fundamental Research Funds for the Central Universities (No. 2010jdhz09).

Abstract

The research of dehydrogenation catalyst for organic hydrides is the key to the cycle of reversible hydrogen storage technology in organic hydrides. The mechanisms of dehydrogenation reaction of several different organic hydrides in the cycle process of hydrogen storage are analyzed. In order to predict the dehydrogenation performance of different active components, the design of catalyst by means of combining density functional theory (DFT) with experiment examples is investigated. And then the development of dehydrogenation catalyst for organic hydrides was reviewed from active components of the catalyst, the choices of corresponding support, preparation methods, structure-activity relationship and other aspects. The performance of dehydrogenation using different mono-metal and bimetallic alloy catalysts was discussed; the changes in the catalyst structure and the catalytic properties influenced by different carriers and modification of the carriers were compared; the relationship between preparation methods and internal structure-activity of catalysts was investigated. It is proposed that in order to get the dehydrogenation catalyst with good catalytic activity, the rational design of organic hydrides dehydrogenation catalyst for the reversible hydrogen storage should be the integration of DFT theoretical prediction, surface science experiments and advanced catalyst synthesis methods.

Cite this article

Qi Suitao , Huang Jun , Chen Hao , Gao Zifeng , Yi Chunhai , Yang Bolun . Development of Dehydrogenation Catalyst for Reversible Hydrogen Storage in Organic Hydrides[J]. Acta Chimica Sinica, 2012 , 70(24) : 2467 -2474 . DOI: 10.6023/A12080603

References

[1] Pradhan, A. U.; Shukla, A.; Pande, J. V.; Karmarkar, S.; Biniwale, R. B. Int. J. Hydrogen Energy 2011, 36, 680.
[2] Schulz, R.; Huot, J.; Liang, G.; Boily, S.; Lalande, G.; Denis, M. C.; Dodelet, J. P. Mater. Sci. Eng. A 1999, 267, 240.
[3] MacPherson, C.; Leung, K. Surf. Sci. 1996, 356, L399.
[4] Tétényi, P.; Paál, Z.; Dobrovolszky, M. Z. Phys. Chem. Neue Folge 1976, 102, 267.
[5] Koel, B. E.; Blank, D. A.; Carter, E. A. J. Mol. Catal. A: Chem. 1998, 131, 39.
[6] Ruiz-Vizcaya, M. E.; Novaro, O.; Ferreira, J. M.; Gomez, R. J. Catal. 1978, 51, 108.
[7] Xu, C.; Koel, B. E.; Newton, M. A.; Frei, N. A.; Campbell, C. T. J. Phys. Chem. 1995, 99, 16670.
[8] Van Trimpont, P. A.; Marin, G. B.; Froment, G. F. Ind. Eng. Chem. Fundamen. 1986, 25, 544.
[9] Alhumaidan, F.; Cresswell, D.; Garforth, A. Ind. Eng. Chem. Res. 2011, 50, 2509.
[10] Ritchie, A. W.; Nixon, A. C. Ind. Eng. Chem. Prod. Res. Dev. 1971, 10, 145.
[11] Yu, J.; Eser, S. Ind. Eng. Chem. Res. 1998, 37, 4601.
[12] Rautanen, P. A.; Lylykangas, M. S.; Aittamaa, J. R.; Krause, A. O. I. Ind. Eng. Chem. Res. 2002, 41, 5966.
[13] Tsuda, M.; Diño, W. A.; Nakanishi, H.; Kasai, H. J. Phys. Soc. Jpn. 2004, 73, 1281.
[14] Kitchin, J. R.; Nørskov, J. K.; Barteau, M. A.; Chen, J. G. Phys. Rev. Lett. 2004, 93, 156801.
[15] Ma, H. Y.; Wang, G. C. J. Catal. 2011, 281, 63.
[16] Peck, J. W.; Koel, B. E. J. Am. Chem. Soc. 1996, 118, 2708.
[17] Mavrikakis, M.; Hammer, B.; Nørskov, J. K. Phys. Rev. Lett. 1998, 81, 2819.
[18] Chen, J. G.; Qi, S. T.; Humbert, M. P.; Menning, C. A.; Zhu, Y. X. Acta Phys.-Chim. Sin. 2010, 26, 869. (陈经广, 齐随涛, Humbert, M. P., Menning, C. A., 朱月香, 物理化学学报, 2010, 26, 869.)
[19] Chen, J. G.; Menning, C. A.; Zellner, M. B. Surf. Sci. Rep. 2008, 63, 201.
[20] Skoplyak, O.; Barteau, M. A.; Chen, J. G. J. Phys. Chem. B 2006, 110, 1686.
[21] Qi, S. T.; Yu, W. T.; Lonergan, W. W.; Yang, B. L.; Chen, J. G. Chin. J. Catal. 2010, 31, 955. (齐随涛, 俞伟婷, Lonergan, W. W., 杨伯伦, 陈经广, 催化学报, 2010, 31, 955.)
[22] Sung, J. S.; Choo, K. Y.; Kim, T. H.; Tarasov, A. L.; Tkachenko, O. P.; Kustov, L.; Kustov, L. M. Int. J. Hydrogen Energy 2008, 33, 2721.
[23] Tien, P. D.; Satoh, T.; Miura, M.; Nomura, M. Fuel Process. Technol. 2008, 89, 415.
[24] Biniwale, R. B.; Kariya, N.; Ichikawa, M. Catal. Lett. 2005, 105, 83.
[25] Kariya, N.; Fukuoka, A.; Ichikawa, M. Appl. Catal., A 2002, 233, 91.
[26] Kariya, N.; Fukuoka, A.; Utagawa, T.; Sakuramoto, M.; Goto, Y.; Ichikawa, M. Appl. Catal., A 2003, 247, 247.
[27] Ali, L. I.; Ali, A. G. A.; Aboul-Fotouh, S.; Aboul-Gheit, A. K. Appl. Catal., A 1999, 177, 99.
[28] Kim, H. J.; Choi, S. M.; Nam, S. H.; Seo, M. H.; Kim, W. B. Catal. Today 2009, 146, 9.
[29] Kim, H. J.; Choi, S. M.; Nam, S. H.; Seo, M. H.; Kim, W. B. Appl. Catal., A 2009, 352, 145.
[30] Liu, Z. J.; Xu, Z.; Yuan, Z. Y.; Lu, D.; Chen, W.; Zhou, W. Catal. Lett. 2001, 72, 203.
[31] Rioux, R. M.; Hsu, B. B.; Grass, M. E.; Song, H.; Somorjai, G. A. Catal. Lett. 2008, 126, 10.
[32] Lonergan, W. W.; Vlachos, D. G.; Chen, J. G. J. Catal. 2010, 271, 239.
[33] Plomp, A. J.; van Asten, D. M. P.; van der Eerden, A. M. J.; Mäki-Arvela, P.; Murzin, D. Y.; de Jong, K. P.; Bitter, J. H. J. Catal. 2009, 263, 146.
[34] Del Angel, G.; Bonilla, A.; Peña, Y.; Navarrete, J.; Fierro, J. L. G.; Acosta, D. R. J. Catal. 2003, 219, 63.
[35] Guo, Z.; Chen, Y.; Li, L.; Wang, X.; Haller, G. L.; Yang, Y. J. Catal. 2010, 276, 314.
[36] Gjervan, T.; Prestvik, R.; Tøtdal, B.; Lyman, C. E.; Holmen, A. Catal. Today 2001, 65, 163.
[37] Tétényi, P.; Galsán, V. Appl. Catal., A 2002, 229, 181.
[38] Riad, M.; Mikhail, S. Catal. Commun. 2008, 9, 1398.
[39] Torres, G. C.; Jablonski, E. L.; Baronetti, G. T.; Castro, A. A.; De Miguel, S. R.; Scelza, O. A.; Blanco, M. D. Appl. Catal., A 1997, 161, 213.
[40] Wang, X.; Li, N.; Webb, J. A.; Pfefferle, L. D.; Haller, G. L. Appl. Catal., B 2010, 101, 21.
[41] Du, J.; Song, C.; Song, J.; Zhao, J.; Zhu, Z. J. Fuel Chem. Technol. 2009, 37, 468.
[42] Su, J.-Y.; Yan, W.; Yang, J.-T.; Sun, Z.-C. J. China Univ. Petro. 1995, 19, 103. (苏君雅, 阎炜, 杨继涛, 孙在春, 石油大学学报自然科学版, 1995, 19, 103.)
[43] Zhu, G.; Yang, B.; Wang, S. Int. J. Hydrogen Energy 2011, 36, 13603.
[44] Escobar, J.; De Los Reyes, J. A.; Viveros, T.; Barrera, M. C. Ind. Eng. Chem. Res. 2006, 45, 5693.
Outlines

/