Article

Rheological Properties, Drug Release Behavior and Cytocompatibility of Novel Hydrogels Prepared from Carboxymethyl Chitosan

  • Liu Shuilian ,
  • Zhou Yang ,
  • Chen Fuhua ,
  • Zhu Shoujin ,
  • Su Feng ,
  • Li Suming
Expand
  • a Institute of High Performance Polymer, Qingdao University of Science and Technology, Qingdao 266042;
    b Qingdao Sinochem New Materials Laboratory, Qingdao 266042;
    c Institut Europeen des Membranes, UMR CNRS 5635, Universite Montpellier II, Montpellier 34095, France

Received date: 2014-10-14

  Online published: 2014-12-09

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 50873030, 51073041).

Abstract

Hydrogels were prepared by crosslinking carboxymethyl chitosan (CMCS) using 1-ethyl-3-(3-dimethylamino- propyl)-1-carbodiimide/N-hydroxysuccinimide (EDC/NHS) as catalyst under mild conditions. The resulting hydrogels present different crosslinking density, depending on the amount of EDC/NHS. Rheological studies show that hydrogels with high crosslinking density present higher storage modulus than those with low crosslinking density. A model drug, thymopentin (TP-5) is loaded in CMCS hydrogels. Parabolic release profiles are obtained in all cases. High crosslinking density hydrogels present slower release rate as compared to low crosslinking density ones because the former exhibits more compact structure. Preliminary studies were performed to evaluate the cytotoxicity of CMCS hydrogels by using MTT assay. Both cell morphology and RGR results show that the CMCS hydrogels present very low toxicity. Therefore, CMCS hydrogels are promising for applications in the fields of tissue engineering and controlled drug delivery.

Cite this article

Liu Shuilian , Zhou Yang , Chen Fuhua , Zhu Shoujin , Su Feng , Li Suming . Rheological Properties, Drug Release Behavior and Cytocompatibility of Novel Hydrogels Prepared from Carboxymethyl Chitosan[J]. Acta Chimica Sinica, 2015 , 73(1) : 47 -52 . DOI: 10.6023/A14100710

References

[1] Molina, I.; Li, S. M.; Martinez, M. B.; Vert, M. Biomaterials 2001, 22, 363.
[2] Fioretta, E. S.; Fledderus, J. O.; Burakowska-Meise, E. A.; Baaijens, F. P. T.; Verhaar, M. C.; Bouten, C. V. C. Macromol. Biosci. 2012, 12, 577.
[3] Chen, S. H.; Tsao, C. T.; Chang, C. H.; Lai, Y. T.; Wu, M. F.; Chuang, C. N.; Chou, H. C.; Wang, C. K.; Hsieh, K. H. Mater. Sci. Eng., C 2013, 33, 2584.
[4] Valmikinathan, C. M.; Mukhatyar, V. J.; Jain, A.; Karumbaiah, L.; Dasari, M.; Bellamkonda, R. V. Soft Matter 2012, 8, 1964.
[5] Chen, S. C.; Wu, Y. C.; Mi, F. L.; Lin, Y. H.; Yu, L. C.; Sung, H. W. J. Controlled Release 2004, 96, 285.
[6] Mourya, V. K.; Inamdar, N. N.; Tiwari, A. Adv. Mater. Lett. 2010, 1, 11.
[7] Yin, X.; Zhou, G.; Wang, C. Y.; Liu, Z. W. J. Wuhan Polytechnic Univ. 2008, 27, 18. (殷雪, 周岿, 王春颖, 刘章武, 武汉工业学院学报, 2008, 27, 18.)
[8] Huang, P. M.S. Thesis, J. Ocean Univ. China, Qingdao, 2009. (黄攀, 硕士论文, 中国海洋大学, 青岛, 2009.)
[9] Chen, L.; Tian, Z.; Du, Y. Biomaterials 2004, 25, 3725.
[10] Wang, G.; Lu, G. Y.; Ao, Q.; Gong, Y. D.; Zhang, X. F. Biotechnol. Lett. 2010, 32, 59.
[11] Hoffman, A. S. Adv. Drug Delivery Rev. 2002, 54, 3.
[12] Hu, Y. F.; Liu, Y. F.; Qi, X.; Liu, P.; Fan, Z. Y.; Li, S. M. Polym. Int. 2012, 61, 74.
[13] Malinen, M. M.; Kanninen, L. K.; Corlu, A.; Isoniemi, H. M.; Lou, Y. R.; Yliperttula, M. L.; Urtti, A. O. Biomaterials 2014, 35, 5110.
[14] Mishra, D.; Bhunia, B.; Banerjee, I.; Datta, P.; Dhara, S.; Maiti, T. K. Mater. Sci. Eng., C 2011, 31, 1295.
[15] Hennink, W. E.; Van Nostrum, C. F. Adv. Drug Delivery Rev. 2002, 54, 13.
[16] Cheung, H. K.; Han, T. T. Y.; Marecak, D. M.; Marecak, D. M.; Watkins, J. F.; Amsden, B. G.; Flynn, L. E. Biomaterials 2014, 35, 1914.
[17] Vaghani, S. S.; Patel, M. M.; Satish, C. S. Carbohydr. Res. 2012, 347, 76.
[18] Drury, J. L.; Mooney, D. J. Biomaterials 2003, 24, 4337.
[19] Van Vlierberghe, S.; Dubruel, P.; Schacht, E. Biomacromolecules 2011, 12, 1387.
[20] Guan, J.; Xu, H. X.; Huang, Y. F.; Tian, K.; Shao, Z. Z.; Chen, X. Acta Chim. Sinica 2010, 68, 89. (管娟, 许惠心, 黄郁芳, 田琨, 邵正中, 陈新, 化学学报, 2010, 68, 89.)
[21] Tseng, H. J.; Tsou, T. L.; Wang, H. J.; Hsu, S. H. J. Tissue Eng. Regen. Med. 2013, 7, 20.
[22] Lin, Y. W.; Li, L. F.; Li, G. W. Acta Chim. Sinica 2012, 70, 2246. (林友文, 李立凡, 李光文, 化学学报, 2012, 70, 2246. )
[23] Zhang, Y. L.; Tao, L.; Li, S. X.; Wei, Y. Biomacromolecules 2011, 12, 2894.
[24] Weng, L.; Romanov, A.; Rooney, J.; Chen, W. Biomaterials 2008, 29, 3905.
[25] Fan, L. H.; Sun, Y.; Xie, W. G.; Zheng, H.; Liu, S. H. J. Biomater. Sci., Polym. Ed. 2012, 23, 2119.
[26] Li, X. Y.; Kong, X. Y.; Zhang, Z. L.; Nan, K. H.; Li, L. L.; Wang, X. H.; Chen, H. Int. J. Biol. Macromol. 2012, 50, 1299.
[27] Zhu, S. J.; Liu, F. Q.; Wang, J. Z.; Su, F.; Li, S. M. Chem. J. Chin. Univ. 2014, 35, 863. (朱寿进, 刘法谦, 王璟朝, 宿烽, 李速明, 高等学校化学学报, 2014, 35, 863.)
[28] ArguKelles-Monal, W.; Goycoolea, F. M.; Peniche, C.; Higuera-ciapara, I. Polym. Gels Networks 1998, 6, 429.
[29] Zhang, Y.; Wu, X.; Han, Y.; Mo, F.; Duan, Y. R.; Li, S. M. Int. J. Pharm. 2010, 386, 15.
[30] Martel-Estrada, S. A.; Olivas-Armendariz, I.; Martinez-Perez, C. A.; Hernandez, T.; Acosta-Gomez, E. I.; Chacon-Nava, J. G.; Jimenez-Vega, F.; Garcia-Casillas, P. E. J. Mater. Sci.-Mater. Med. 2012, 23, 2893.

Outlines

/