Photoelectronic Porous Covalent Organic Materials: Research Progress and Perspective
Received date: 2015-02-11
Online published: 2015-04-13
Supported by
Project supported by the National Hi-tech R&D Program of China (No. 863 Program, 2012AA101809), the Start-up fund for talent introduction of Beijing University of Chemical Technology (No. buctrc201420), Talent cultivation of State Key Laboratory of Organic-Inorganic Composites (Nos. OIC201403003, OIC201503002) and the Fundamental Research Funds for the Central Universities (ZY1508).
Porous covalent organic materials (COM) are a class of multi-dimensional and multi-functional porous materials, which are built via covalent bond of colorful organic building blocks. COM materials possess inherent optimized pore size allowing ion migration, and high specific surface area, providing the possibility of formation of an electrostatic charge-separation layer, a conjugated system resulting in light-harvesting properties and a highly ordered structure, enabling the formation of conductive paths. In this review, we summary the applications on semiconductor, photolysis of water, solar cell, oxygen reduction reaction in fuel cell, lithium-ion/sulfur battery basing on COM materials. Meanwhile, we also propose the design strategy for photoelectronic materials. Although the development of COMs as photoelectronic materials is still in its infancy, COM materials has being attracting ever-increasing attention and open a new window in this field.
Wan Gang , Fu Yu'ang , Guo Jianing , Xiang Zhonghua . Photoelectronic Porous Covalent Organic Materials: Research Progress and Perspective[J]. Acta Chimica Sinica, 2015 , 73(6) : 557 -578 . DOI: 10.6023/A15020106
[1] Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673.
[2] Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 974.
[3] Xiang, Z. H.; Cao, D. P.; Lan, J. H.; Wang, W. C.; Broom, D. P. Energy Environ. Sci. 2010, 3, 1469.
[4] Xiang, Z. H.; Hu, Z.; Cao, D. P.; Yang, W. T.; Lu, J. M.; Han, B. Y.; Wang, W. C. Angew. Chem., Int. Ed. 2011, 50, 491.
[5] Xiang, Z. H.; Peng, X.; Cheng, X.; Li, X. J.; Cao, D. P. J. Phys. Chem. C 2011, 115, 19864.
[6] He, Y.; Tan, Y.; Zhang, J. Acta Chim. Sinica 2014, 72, 1228. (何燕萍, 谭衍曦, 张健, 化学学报, 2014, 72, 1228.)
[7] Liu, B.; Lian, Y.; Li, Z.; Chen, G. Acta Chim. Sinica 2014, 72, 942. (刘蓓, 廉源会, 李智, 陈光进, 化学学报, 2014, 72, 942.)
[8] Jia, J.; Wang, L.; Zhao, Q.; Sun, F.; Zhu, G. Acta Chim. Sinica 2013, 71, 1492. (贾江涛, 王蕾, 赵晴, 孙福兴, 朱广山, 化学学报, 2013, 71, 1492.)
[9] Zhu, W.-H.; Wang, Z.-M.; Gao, S. Inorg. Chem. 2007, 46, 1337.
[10] Li, W.; Gao, S.; Cheetham, A. K. Appl. Mater. 2014, 2, 123902.
[11] Xiang, Z. H.; Cao, D. P. J. Mater. Chem. A 2013, 1, 2691.
[12] Feng, X.; Ding, X.; Jiang, D. Chem. Soc. Rev. 2012, 41, 6010.
[13] Ding, S. Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.
[14] Puthiaraj, P.; Pitchumani, K. Chem. Eur. J. 2014, 20, 8761.
[15] Zhao, Y.; Yao, K. X.; Teng, B.; Zhang, T.; Han, Y. Energy Environ. Sci. 2013, 6, 3684.
[16] McKeown, N. B.; Budd, P. M. Macromolecules 2010, 43, 5163.
[17] Ren, S.; Dawson, R.; Laybourn, A.; Jiang, J. X.; Khimyak, Y.; Adams, D. J.; Cooper, A. I. Polym. Chem. 2012, 3, 928.
[18] Xu, Y. H.; Jin, S. B.; Xu, H.; Nagai, A.; Jiang, D. L. Chem. Soc. Rev. 2013, 42, 8012.
[19] Cooper, A. I. Adv. Mater. 2009, 21, 1291.
[20] Vilela, F.; Zhang, K.; Antonietti, M. Energy Environ. Sci. 2012, 5, 7819.
[21] Cheng, G.; Bonillo, B.; Sprick, R. S.; Adams, D. J.; Hasell, T.; Cooper, A. I. Adv. Funct. Mater. 2014, 24, 5219.
[22] Zhang, T.; Wang, H.; Ma, H.; Sun, F.; Cui, X.; Zhu, G. Acta Chim. Sinica 2013, 71, 1598. (张婷婷, 王海涛, 马和平, 孙福兴, 崔小强, 朱广山, 化学学报, 2013, 71, 1598.)
[23] Jeon, H.-J.; Kim, D.-O.; Park, J.-S.; Kim, J.-S.; Kim, D.-W.; Jung, M.-S.; Shin, S.-W.; Lee, S.-W. Polymer-Korea 2011, 35, 66.
[24] Valderrama, C.; Gamisans, X.; Cortina, J. L.; Farran, A.; de Las Heras, F. X. J. Chem. Technol. Biotechnol. 2009, 84, 236.
[25] Yuan, D.; Lu, W.; Zhao, D.; Zhou, H.-C. Adv. Mater. 2011, 23, 3723.
[26] Lu, W. G.; Yuan, D. Q.; Sculley, J. L.; Zhao, D.; Krishna, R.; Zhou, H. C. J. Am. Chem. Soc. 2011, 133, 18126.
[27] Gao, X.; Lu, P.; Ma, Y. Chem. J. Chinese Univ. 2014, 35, 1795.
[28] Ben, T.; Qiu, S. CrystEngComm 2013, 15, 17.
[29] Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S.; Zhu, G. Angew. Chem., Int. Ed. 2009, 48, 9457.
[30] Wang, W.; Yan, Z.; Yuan, Y.; Sun, F.; Zhao, M.; Ren, H.; Zhu, G. Acta Chim. Sinica 2014, 72, 557. (王维, 闫卓君, 元野, 孙福兴, 赵明, 任浩, 朱广山, 化学学报, 2014, 72, 557.)
[31] Xiang, Z. H.; Cao, D. P. Macromol. Rapid Commun. 2012, 33, 1184.
[32] Xiang, Z. H.; Wang, W. C.; Cao, D. P. Sci. China Chem. 2012, 42, 235. (向中华, 汪文川, 曹达鹏, 中国科学化学, 2012, 42, 235.)
[33] Xiang, Z. H.; Cao, D. P.; Wang, W. C.; Yang, W. T.; Han, B. Y.; Lu, J. M. J. Phys. Chem. C 2012, 116, 5974.
[34] Xiang, Z. H.; Zhou, X.; Zhou, C. H.; Zhong, S.; He, X.; Qin, C. P.; Cao, D. P. J. Mater. Chem. 2012, 22, 22663.
[35] Xiang, Z. H.; Xue, Y. H.; Cao, D. P.; Huang, L.; Chen, J. F.; Dai, L. M. Angew. Chem. Int. Ed. 2014, 53, 2433.
[36] Xiang, Z. H.; Cao, D. P.; Huang, L.; Shui, J. L.; Wang, M.; Dai, L. M. Adv. Mater. 2014, 26, 3315.
[37] Dawson, R.; Cooper, A. I.; Adams, D. J. Prog. Polym. Sci. 2012, 37, 530.
[38] Zou, X.; Ren, H.; Zhu, G. Chem. Commun. 2013, 49, 3925.
[39] Bunz, U. H. F.; Seehafer, K.; Geyer, F. L.; Bender, M.; Braun, I.; Smarsly, E.; Freudenberg, J. Macromol. Rapid Commun. 2014, 35, 1466.
[40] Thomas, A. Angew. Chem., Int. Ed. 2010, 49, 8328.
[41] Zhu, G. S.; Ren, H. Porous Organic Frameworks: Design, Synthesis and Their Advanced Applications, Springer, 2014.
[42] Liu, X.-H.; Guan, C.-Z.; Wang, D.; Wan, L.-J. Adv. Mater. 2014, 26, 6912.
[43] Chang, Z.; Zhang, D. S.; Chen, Q.; Bu, X. H. Phys. Chem. Chem. Phys. 2013, 15, 5430.
[44] Dawson, R.; Cooper, A. I.; Adams, D. J. Polym. Int. 2013, 62, 345.
[45] Xu, H.; Chen, X.; Gao, J.; Lin, J.; Addicoat, M.; Irle, S.; Jiang, D. Chem. Commun. 2014, 50, 1292.
[46] Zhang, M.; Wang, X. Energy Environ. Sci. 2014, 7, 1902.
[47] Gu, C.; Huang, N.; Gao, J.; Xu, F.; Xu, Y. H.; Jiang, D. L. Angew. Chem., Int. Ed. 2014, 53, 4850.
[48] Altarawneh, S.; Nahar, L.; Arachchige, I. U.; Ala'a, O.; Hallal, K. M.; Kaafarani, B. R.; Rabbani, M. G.; Arvapally, R. K.; El-Kaderi, H. M. J. Mater. Chem. A 2015.
[49] Sang, N.; Zhan, C.; Cao, D. J. Mater. Chem. A 2015, 3, 92.
[50] Chen, L.; Honsho, Y.; Seki, S.; Jiang, D. J. Am. Chem. Soc. 2010, 132, 6742.
[51] Jiang, J.-X.; Trewin, A.; Adams, D. J.; Cooper, A. I. Chem. Sci. 2011, 2, 1777.
[52] Xu, Y.; Chen, L.; Guo, Z.; Nagai, A.; Jiang, D. J. Am. Chem. Soc. 2011, 133, 17622.
[53] Guo, J.; Xu, Y. H.; Jin, S. B.; Chen, L.; Kaji, T.; Honsho, Y.; Addicoat, M. A.; Kim, J.; Saeki, A.; Ihee, H.; Seki, S.; Irle, S.; Hiramoto, M.; Gao, J.; Jiang, D. L. Nat. Commun. 2013, 4, 2736.
[54] Dogru, M.; Bein, T. Chem. Commun. 2014, 50, 5531.
[55] Guo, B.; Ben, T.; Bi, Z.; Veith, G. M.; Sun, X.-G.; Qiu, S.; Dai, S. Chem. Commun. 2013, 49, 4905.
[56] Choi, N.-S.; Han, J.-G.; Ha, S.-Y.; Park, I.; Back, C.-K. RSC Adv. 2015, 5, 2732.
[57] Su, Y.; Liu, Y.; Liu, P.; Wu, D.; Zhuang, X.; Zhang, F.; Feng, X. Angew. Chem., Int. Ed. 2015, 54, 1812
[58] Filer, A.; Choi, H.-J.; Seo, J.-M.; Baek, J.-B. Phys. Chem. Chem. Phys. 2014, 16, 11150.
[59] Lino, M. A.; Lino, A. A.; Mazzoni, M. S. C. Chem. Phys. Lett. 2007, 449, 171.
[60] Huang, L.; Xiang, Z. H.; Cheng, D. J.; Lan, J. H.; Wang, W. C.; Ben, T.; Cao, D. P. Nanotechnology 2012, 23, 395702.
[61] Xiang, Z. H.; Cao, D. P.; Dai, L. M. Polym. Chem. 2015, 6, 1896.
[62] Phillip, W. A.; O'Neill, B.; Rodwogin, M.; Hillmyer, M. A.; Cussler, E. L. ACS Appl. Mater. Interfaces 2010, 2, 847.
[63] Kimmins, S. D.; Cameron, N. R. Adv. Funct. Mater. 2011, 21, 211.
[64] Patwardhan, S.; Kocherzhenko, A. A.; Grozema, F. C.; Siebbeles, L. D. A. J. Phys. Chem. C 2011, 115, 11768.
[65] Mei, J.; Diao, Y.; Appleton, A. L.; Fang, L.; Bao, Z. J. Am. Chem. Soc. 2013, 135, 6724.
[66] Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.
[67] Lukose, B.; Kuc, A.; Frenzel, J.; Heine, T. Beilstein J. Nanotechnol. 2010, 1, 60.
[68] Lukose, B.; Kuc, A.; Heine, T. Chem. Eur. J. 2011, 17, 2388.
[69] Koo, B. T.; Dichtel, W. R.; Clancy, P. J. Mater. Chem. 2012, 22, 17460.
[70] Medina, D. D.; Werner, V.; Auras, F.; Tautz, R.; Dogru, M.; Schuster, J.; Linke, S.; Doeblinger, M.; Feldmann, J.; Knochel, P.; Bein, T. ACS Nano 2014, 8, 4042.
[71] Colson, J. W.; Woll, A. R.; Mukherjee, A.; Levendorf, M. P.; Spitler, E. L.; Shields, V. B.; Spencer, M. G.; Park, J.; Dichtel, W. R. Science 2011, 332, 228.
[72] Xu, L.; Zhou, X.; Tian, W. Q.; Gao, T.; Zhang, Y. F.; Lei, S.; Liu, Z. F. Angew. Chem., Int. Ed. 2014, 53, 9564.
[73] Gunasinghe, R. N.; Reuven, D. G.; Suggs, K.; Wang, X.-Q. J. Phys. Chem. Lett. 2012, 3(20), 3048.
[74] Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. Angew. Chem., Int. Ed. 2008, 120, 8958.
[75] Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. Angew. Chem., Int. Ed. 2009, 48, 5439.
[76] Feng, X.; Chen, L.; Honsho, Y.; Saengsawang, O.; Liu, L.; Wang, L.; Saeki, A.; Irle, S.; Seki, S.; Dong, Y.; Jiang, D. Adv. Mater. 2012, 24, 3026.
[77] Spitler, E. L.; Dichtel, W. R. Nat. Chem. 2010, 2(8), 672.
[78] Ding, X.; Guo, J.; Feng, X.; Honsho, Y.; Guo, J.; Seki, S.; Maitarad, P.; Saeki, A.; Nagase, S.; Jiang, D. Angew. Chem., Int. Ed. 2011, 50, 1289.
[79] Ding, X.; Chen, L.; Honsho, Y.; Feng, X.; Saenpawang, O.; Guo, J.; Saeki, A.; Seki, S.; Irle, S.; Nagase, S.; Parasuk, V.; Jiang, D. J. Am. Chem. Soc. 2011, 133, 14510.
[80] Jin, S. B; Ding, X. H; Feng, X.; Super, M.; Furukawa, K.; Takahashi, S.; Addicoat, M.; El-Khouly, M. E.; Nakamura, T.; Irle, S. Angew. Chem., Int. Ed. 2013, 52(7), 2017.
[81] Gandara, Y.; Asano, A.; Furukawa, H.; Sasaki, A.; Dey, S. K.; Liao, L.; Ambrogio, M. W.; Botros, Y. Y.; Duan, X. F.; Seki, S.; Stoddart, J. F.; Yaghi, O. M. Chem. Mater. 2011, 23(18), 4094
[82] Feng, X.; Liu, L.; Honsho, Y.; Saeki, A.; Seki, S.; Irle, S.; Dong, Y.; Nagai, A.; Jiang, D. Angew. Chem., Int. Ed. 2012, 51, 2618.
[83] Bertrand, G. H.; Michaelis, V. K.; Ong, T.-C.; Griffin, R. G.; Dinc?, M. Proc. Natl. Acad. Sci. 2013, 110, 4923.
[84] Dogru, M.; Handloser, M.; Auras, F.; Kunz, T.; Medina, D.; Hartschuh, A.; Knochel, P.; Bein, T. Angew. Chem., Int. Ed. 2013, 52, 2920.
[85] Linsebigler, A. L.; Lu, G.; Yates Jr, J. T. Chem. Rev. 1995, 95, 735.
[86] Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253.
[87] Groenewolt, M.; Antonietti, M. Adv. Mater. 2005, 17, 1789.
[88] Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2008, 8, 76.
[89] Wang, X.; Maeda, K.; Chen, X.; Takanabe, K.; Domen, K.; Hou, Y.; Fu, X.; Antonietti, M. J. Am. Chem. Soc. 2009, 131, 1680.
[90] Li, Q.; Yue, B.; Iwai, H.; Kako, T.; Ye, J. J. Phys. Chem. C 2010, 114, 4100.
[91] Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V. Chem. Sci. 2014, 5, 2789.
[92] Habas, S. E.; Platt, H. A.; van Hest, M. F.; Ginley, D. S. Chem. Rev. 2010, 110, 6571.
[93] Hoppe, H.; Sariciftci, N. S. J. Mater. Res. 2004, 19, 1924.
[94] Joshi, D.; Shivanna, R.; Narayan, K. S. J. Mod. Optic. 2014, 61, 1703.
[95] Chang, J. A.; Rhee, J. H.; Im, S. H.; Lee, Y. H.; Kim, H.-J.; Seok, S. I.; Nazeeruddin, M. K.; Gratzel, M. Nano Lett. 2010, 10, 2609.
[96] Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-J.; Sarkar, A.; Nazeeruddin, M. K.; Graetzel, M.; Seok, S. I. Nat. Photonics 2013, 7, 487.
[97] O’Regan,B.; Gratzel, M. Nature 1991,353,737.
[98] Chen, L.; Furukawa, K.; Gao, J.; Nagai, A.; Nakamura, T.; Dong, Y.; Jiang, D. J. Am. Chem. Soc. 2014, 136, 9806.
[99] Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Appl. Catal. B-Environ. 2005, 56, 9.
[100] Feng, Y. J.; Alonso-Vante, N. Phys. Status Solidi B 2008, 245, 1792.
[101] Zhao, H.; Jin, Z.; Su, H.; Jing, X.; Sun, F.; Zhu, G. Chem. Commun. 2011, 47, 6389.
[102] Pachfule, P.; Dhavale, V. M.; Kandambeth, S.; Kurungot, S.; Banerjee, R. Chem. Eur. J. 2013, 19, 974.
[103] Wu, Z. S.; Chen, L.; Liu, J. Z.; Parvez, K.; Liang, H. W.; Shu, J.; Sachdev, H.; Graf, R.; Feng, X. L.; Mullen, K. Adv. Mater. 2014, 26, 1450.
[104] Zhuang, X.; Zhang, F.; Wu, D.; Forler, N.; Liang, H.; Wagner, M.; Gehrig, D.; Hansen, M. R.; Laquai, F.; Feng, X. Angew. Chem., Int. Ed. 2013, 52, 9668.
[105] Zhang, Y.; Zhuang, X.; Su, Y.; Zhang, F.; Feng, X. J. Mater. Chem. A 2014, 21(2), 7742.
[106] Song, Z.; Zhou, H. Energy Environ. Sci. 2013, 6, 2280.
[107] Xu, F.; Chen, X.; Tang, Z.; Wu, D.; Fu, R.; Jiang, D. Chem. Commun. 2014, 50, 4788.
[108] Huang, Y.; Wu, D.; Wang, J.; Han, S.; Lv, L.; Zhang, F.; Feng, X. Small 2014, 10, 2226.
[109] Kwon, M.-S.; Choi, A.; Park, Y.; Cheon, J. Y.; Kang, H.; Jo, Y. N.; Kim, Y.-J.; Hong, S. Y.; Joo, S. H.; Yang, C.; Lee, K. T. Sci. Rep. 2014, 4, 7404.
[110] Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. Nature 2000, 407, 496.
[111] Bruce, P. G.; Scrosati, B.; Tarascon, J.-M. Angew. Chem., Int. Ed. 2008, 47, 2930.
[112] Xiao, L.; Cao, Y.; Xiao, J.; Schwenzer, B.; Engelhard, M. H.; Saraf, L. V.; Nie, Z.; Exarhos, G. J.; Liu, J. Adv. Mater. 2012, 24, 1176.
[113] Tarascon, J. M.; Armand, M. Nature 2001, 414, 359.
[114] Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.
[115] Liao, H.; Ding, H.; Li, B.; Ai, X.; Wang, C. J. Mater. Chem. A 2014, 2, 8854.
[116] Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245.
[117] Feng, X.; Liang, Y.; Zhi, L.; Thomas, A.; Wu, D.; Lieberwirth, I.; Kolb, U.; Müllen, K. Adv. Funct. Mater. 2009, 19, 2125.
[118] Liang, Y.; Feng, X.; Zhi, L.; Kolb, U.; Müllen, K. Chem. Commun. 2009, 809.
[119] Bao, Q.; Bao, S.; Li, C. M.; Qi, X.; Pan, C.; Zang, J.; Lu, Z.; Li, Y.; Tang, D. Y.; Zhang, S. J. Phys. Chem. C 2008, 112, 3612.
[120] Béguin, F.; Szostak, K.; Lota, G.; Frackowiak, E. Adv. Mater. 2005, 17, 2380.
[121] Raymundo-Piñero, E.; Leroux, F.; Béguin, F. Adv. Mater. 2006, 18, 1877.
[122] Xiang, Z. H.; Wang, D.; Xue, Y. H.; Dai, L. M.; Chen, J. F.; Cao, D. P. Sci. Rep. 2015, 5, 8307.
[123] Li, Y.; Roy, S.; Ben, T.; Xua, S.; Qiu, S. Phys. Chem. Chem. Phys. 2014, 16, 12909.
[124] Liu, X.; Zhou, L.; Zhao, Y.; Bian, L.; Feng, X.; Pu, Q. ACS Appl. Mater. Interfaces 2013, 5, 10280.
[125] Zhuang, X.; Zhang, F.; Wu, D.; Feng, X. Adv. Mater. 2014, 26, 3081.
[126] Yang, X.; Zhuang, X.; Huang, Y.; Jiang, J.; Tian, H.; Wu, D.; Zhang, F.; Mai, Y.; Feng, X. Polym. Chem. 2015, 6, 1088.
[127] Kou, Y.; Xu, Y.; Guo, Z.; Jiang, D. Angew. Chem., Int. Ed. 2011, 50, 8753.
[128] Yamada, H.; Nakamura, H.; Nakahara, F.; Moriguchi, I.; Kudo, T. J. Phys. Chem. C 2007, 111, 227.
/
〈 |
|
〉 |