Review

Structure, Preparation and Properties of Phosphorene

  • Yuan Zhenzhou ,
  • Liu Danmin ,
  • Tian Nan ,
  • Zhang Guoqing ,
  • Zhang Yongzhe
Expand
  • a Beijing Key Laboratory of Microstructure and Properties of Advanced Material, Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124;
    b Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124

Received date: 2016-01-16

  Online published: 2016-05-13

Supported by

Project supported by the National Natural Science Foundation of China (NSFC) (Nos. 51302081 and 61575010), the Beijing Nova Program (No. Z141109001814053), the Science and Technology Commission of Beijing Municipality (No. Z151100003315018), the Open subject of Key Laboratory of Semiconductor Materials Science Institute of Semiconductors, Chinese Academy of Sciences (No. KLSMS-1404) and the Fundamental Research Funds for the Central Universities (No. 222015Y-4006).

Abstract

Two-dimensional (2D) materials have attracted broad interest because of their low-dimensional effect, and black phosphorus has become a member of them due to the successful preparation. Phosphorus has several allotropes, white phosphorus, red phosphorus and black phosphorus. Black phosphorus is most thermodynamic stable in them. Black phosphorus was obtained by a phase transition from white or red phosphorus at high pressure and high temperature. It is a natural p-type semiconductor in which each layer is vertically stacked by the van der Waals force. The thickness of black phosphorus can be scaled down to the atomic layer scale known as phosphorene by mechanical exfoliation or liquid exfoliation. In nowadays, pulsed laser deposition (PLD) has also been used in synthesis of phosphorene film. Compared with black phosphorus, phosphorene’s physical properties have significant changes. The band gap in bulk black phosphorus is 0.3 eV and can be expanded to 1.0 to 1.5 eV depending on the layer numbers. The range of phosphorene band gap corresponds to an absorption spectrum between visible light to infrared. Moreover, the band gap of phosphorene is also highly sensitive to the strain either in-plane or out-of-plane. The phosphorene based field effect transistor (FET) exhibits a high mobility and appreciably high on/off ratios, and the mobility is thickness dependent. Unlike other two-dimensional (2D) materials, phosphorene has in-plane anisotropy which is suitable for the detecting of polarized light. Hence, the unique properties in black phosphorus, along with its high carrier mobility, make it as a promising material in electronic applications. Nevertheless, the poor chemical and structural stability of black phosphorus and phosphorene raises important concerns. In the past century, the synthesis, physical properties, and device applications have been extensively investigated in various studies. In this review article, a lot of references of black phosphorus are cited to introduce systematically the research progresses of structure and preparation, the study of material properties and device performance, the chemistry of the degradation process and the anti-degradation treatments. At last, the development trend of phosphorene is mentioned.

Cite this article

Yuan Zhenzhou , Liu Danmin , Tian Nan , Zhang Guoqing , Zhang Yongzhe . Structure, Preparation and Properties of Phosphorene[J]. Acta Chimica Sinica, 2016 , 74(6) : 488 -497 . DOI: 10.6023/A16010035

References

[1] (a) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2006, 206, 666.
(b) Rader, O.; Varykhalov, A.; Sánchez-Barriga, J.; Marchenko, D.; Rybkin, A.; Shikin, A. M. Phys. Rev. Lett. 2009, 102, 057602.
(c) Barone, V.; Peralta, J. E. Nano Lett. 2008, 8, 2210.
(d) Li, W.; Zhang, G.; Guo, M.; Zhang, Y. W. Nano Res. 2014, 7, 518.
(e) Duerloo, K. N.; Li, Y.; Reed, E. J. Nat. Commun. 2014, 5, 4214.
(f) Peng, H. L. Acta Chim. Sinica 2015, 73, 861 (in Chinese).(彭海琳, 化学学报, 2015, 73, 861.)
[2] (a) Novoselov, K.; Geim, A. K.; Morozov, S.; Jiang, D.; Grigorieva, M. K. I.; Dubonos, S.; Firsov, A. Nature 2005, 438, 197.
(b) Novoselov, K.; McCann, E.; Morozov, S.; Fal' ko, V. I.; Katsnelson, M.; Zeitler, U.; Jiang, D.; Schedin, F.; Geim, A. Nature Phys. 2006, 2, 177.
(c) Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201.
[3] (a) Liao, L.; Lin, Y. C.; Bao, M.; Cheng, R.; Bai, J.; Liu, Y.; Qu, Y.; Wang, K. L.; Huang, Y.; Duan, X. Nature 2010, 467, 305.
(b) Schwierz, F. Nature Nanotech. 2010, 5, 487.
(c) Wu, Y.; Lin, Y.-M.; Bol, A. A.; Jenkins, K. A.; Xia, F.; Farmer, D. B.; Zhu, Y.; Avouris, P. Nature 2011, 472, 74.
[4] Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Phys. Rev. Lett. 2010, 105, 136805.
[5] (a) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nature Nanotech. 2011, 6, 147.
(b) Yoon, Y.; Ganapathi, K.; Salahuddin, S. Nano Lett. 2011, 11, 3768.
[6] (a) Liu, H.; Neal, A. T.; Ye, P. D. ACS Nano 2012, 6, 8563.
(b) Popov, I.; Seifert, G.; Tománek, D. Phys. Rev. Lett. 2012, 108, 156802.
(c) Das, S.; Chen, H.-Y.; Penumatcha, A. V.; Appenzeller, J. Nano Lett. 2013, 13, 100.
[7] Radisavljevic, B.; Radenovi, A.; Brivio, J.; Giacometti, V.; Kis, A. Nature Nanotech. 2011, 6, 147.
[8] (a) Fuhrer, M. S.; Hone, J. Nature Nanotech. 2013, 8, 146.
(b) Radisavljevic, B.; Kis, A. Nature Nanotech. 2013, 8, 147.
[9] Li, L.; Yu, Y.; Ye, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y. Nature Nanotech. 2014, 9, 372.
[10] (a) Brown, A.; Rundqvist, S. Acta Crystallogr. 1965, 19, 684.
(b) Jamieson, J. C. Science 1963, 139, 1291.
[11] (a) Keyes, R. W. Phys. Rev. 1953, 92, 580.
(b) Takao, Y.; Morita, A. Phys. B 1981, 105, 93.
[12] (a) Zhang, C. D.; Lian, J. C.; Yi, W.; Jiang, Y. H.; Liu, L. W.; Hu, H.; Xiao, W. D.; Du, S. X.; Sun, L. L.; Gao, H. J. J. Phys. Chem. C 2009, 113, 18823.
(b) Gagarin, S. G.; Teterin, Y. A. Plenum Publishing Corp. 1986, 26, 535.
[13] Qiao, J.; Kong, X.; Hu, Z. X.; Yang, F.; Ji, W. Nat. Commun. 2014, 5, 4475.
[14] Dai, J.; Zeng, X. C. J. Phys. Chem. Lett. 2014, 5, 1289.
[15] Wang, X. S.; Xie, L. M.; Zhang, J. Acta Chim. Sinica 2015, 73, 886 (in Chinese).(王新胜, 谢黎明, 张锦, 化学学报, 2015, 73, 886.)
[16] (a) Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P. D. ACS Nano 2014, 8, 4033.
(b) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
(c) Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207.
(d) Artacho, E.; Anglada, E.; Dieguez, O.; Gale, J. D.; Garcia, A.; Junquera, J.; Martin, R. M.; Ordejon, P.; Pruneda, J. M.; Sanchez-Portal, D.; Soler, J. M. J. Phys.: Condens. Matter 2008, 20, 064208.
(e) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.
(f) Zhang, S.; Yang, J.; Xu, R.; Wang, F.; Li, W.; Ghufran, M.; Zhang, Y.-W. ; Yu, Z.; Zhang, G.; Qin, Q.; Lu, Y. ACS Nano 2014, 8, 9590.
(g) Ju, W.-W.; Li, T.-W.; Yong, J.-L.; Sun, J.-F. J. Atom. Mol. 2015, 32, 329 (in Chinese).(琚伟伟, 李同伟, 雍永亮, 孙金锋, 原子与分子物理学报, 2015, 32, 329.)
[17] (a) Johari, P.; Shenoy, V. B. ACS Nano 2012, 6, 5449.
(b) Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.; Stesmans, A. Nano Res. 2012, 5, 43.
[18] Rodin, A. S.; Carvalho, A.; Neto, A. C. Phys. Rev. Lett. 2014, 112, 176801.
[19] Peng, X.; Wei, Q.; Copple, A. Phys. Rev. B 2014, 90, 085402.
[20] Manjanath, A.; Samanta, A.; Pandey, T.; Singh, A. K. Nanotechnology 2015, 26, 075701.
[21] Bridgman, P. W. J. Am. Chem. Soc. 1914, 36, 1344.
[22] Bridgman, P. W. AAAS 1948, 76, 55.
[23] (a) Bridgman, P. W. Phys. Rev. 1935, 48, 825.
(b) Bridgman, P. W. AAAS 1937, 71, 387.
[24] Maruyama, Y.; Suzuki, S.; Kobayashi, K.; Tanuma, S. Physica B & C 1981, 105, 99.
[25] Endo, S.; Akahama, Y.; Terada, S. I.; Narita, S. I. Jpn. J. Appl. Phys. 1982, 21, L482.
[26] Park, C. M.; Sohn, H. J. Adv. Mater. 2007, 19, 2465.
[27] Lange, S.; Schmidt, P.; Nilges, T. Inorg. Chem. 2007, 46, 4028.
[28] Nilges, T.; Kersting, M.; Pfeifer, T. J. Solid State Chem. 2008, 181, 1707.
[29] (a) Xia, F.; Wang, H.; Jia, Y. Nat. Commun. 2014, 5, 4458.
(b) Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; vander Zant, H. S. J.; Castellanos-Gomez, A. Nano Lett. 2014, 14, 3347.
(c) Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Archarya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V.; Zandbergen, H. W.; Palacios, J. J.; vander Zant, H. S. J. 2D Mater. 2014, 1, 025001.
(d) Engel, M.; Steiner, M.; Avouris, P. Nano Lett. 2014, 14, 6414.
(e) Koenig, S. P.; Doganov, R. A.; Schmidt, H.; Castro Neto, A. H.; Özyilmaz, B. Appl. Phys. Lett. 2014, 104, 103106.
(f) Lu, W.; Nan, H.; Hong, J.; Chen, Y.; Liang, Z.; Ni, Z.; Jin, C.; Zhang, Z. Nano Res. 2014, 7, 853.
[30] (a) Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Science 2013, 340, 1226419.
(b) Zhuo, S.; Shao, M.; Lee, S. T. ACS Nano 2012, 6, 1059.
[31] Brent, J. R.; Savjani, N.; Lewis, E. A.; Haigh, S. J.; Lewis, D. J.; O'Brien, P. Chem. Commun. 2014, 50, 13338.
[32] Guo, Z.; Zhang, H.; Lu, S.;Wang, Z.; Tang, S.; Shao, J.; Sun, Z.; Xie, H.; Wang, H.; Yu, X.-F.; Chu, P. K. Adv. Funct. Mater. 2015, 25, 6996.
[33] Yasaei, P.; Kumar, B.; Foroozan, T.; Wang, C.; Asadi, M.; Tuschel, D.; Indacochea, J. E.; Klie, R. F.; Salehi-Khojin, A. Adv. Mater. 2015, 27, 1887.
[34] Zhang, X.; Xie, H.; Liu, Z.; Tan, C.; Luo, Z.; Li, H.; Lin, J.; Sun, L.; Chen, W.; Xu, Z.; Xie, L.; Huang, W.; Zhang, H. Angew. Chem. Int. Ed. 2015, 54, 3653.
[35] Yang, Z.; Hao, J.; Yuan, S.; Lin, S.; Yau, H. M.; Dai, J.; Lau, S. P. Adv. Mater. 2015, 27, 3748.
[36] (a) Wu, J. X.; Xu, H.; Zhang, J. Acta Chim. Sinica 2014, 72, 301 (in Chinese).(吴娟霞, 徐华, 张锦, 化学学报, 2014, 72, 301.)
(b) Wang, X.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y.; Zhao, H.; Wang, H.; Yang, L.; Xu, X.; Xia, F. Nature Nanotech. 2015, 10, 517.
[37] (a) Sugai, S.; Shirotani, I. Solid State Commun. 1985, 53, 753.
(b) Fei, R.; Yang, L. Appl. Phys. Lett. 2014, 105, 083120.
[38] (a) Wei, Q.; Peng, X. Appl. Phys. Lett. 2014, 104, 251915.
(b) Jiang, J. W; Park, H. S. J. Phys. D: Appl. Phys. 2014, 47, 385304.
(c) Jiang, J. W; Park, H. S. Nat. Commun. 2014, 5, 4727.
(d) Jiang, J. W; Rabczuk, T.; Park, H. S. Nanoscale 2015, 7, 6059.
(e) Warschauer, D. J. Appl. Phys. 1963, 34, 1853.
[39] (a) Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385.
(b) Liu, F.; Ming, P.; Li, J. Phys. Rev. B 2007, 76, 064120.
[40] Hicks, L. D.; Dresselhaus, M. S. Phys. Rev. B 1993, 47, 12727.
[41] Fei, R.; Faghaninia, A.; Soklaski, R.; Yan, J. A.; Lo, C.; Yang, L. Nano Lett. 2014, 14, 6393.
[42] Konabe, S.; Yamamoto, T. Appl. Phys. Express 2015, 8, 015202.
[43] Yin, D.; Han, G.; Yoon, Y. IEEE Electr. Device L. 2015, 36, 978.
[44] Das, S.; Demarteau, M.; Roelofs, A. ACS Nano 2014, 8, 11730.
[45] Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Nature Nanotech. 2013, 8, 497.
[46] Perea-López, N.; Elías, A. L.; Berkdemir, A.; Castro-Beltran, A.; Gutiérrez, H. R.; Feng, S.; Lv, R.; Hayashi, T.; López-Urías, F.; Ghosh, S.; Muchharla, B.; Talapatra, S.; Terrones, H.; Terrones, M. Adv. Funct. Mater. 2013, 23, 5511.
[47] Jacobs-Gedrim, R. B.; Shanmugam, M.; Jain, N.; Durcan, C. A.; Murphy, M. T.; Murray, T. M.; Matyi, R. J.; Moore, R. L.; Yu, B. ACS Nano 2013, 8 , 514.
[48] Hu, P.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K. ACS Nano 2012, 6, 5988.
[49] Deng, Y.; Luo, Z.; Conrad, N. J.; Liu, H.; Gong, Y.; Najmaei, S.; Ajayan, P. M.; Lou, J.; Xu, X.; Ye, P. D. ACS Nano 2014, 8, 8292.
[50] (a) Huang, X.; Qi, X.; Boey, F.; Zhang, H. Chem. Soc. Rev. 2012, 41, 666.
(b) Huang, X.; Zeng, Z.; Zhang, H. Chem. Soc. Rev. 2013, 42, 1934.
(c) Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. Nature Chem. 2013, 5, 263.
(d) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Nature Nanotech. 2012, 7, 699.
[51] Favron, A.; Gaufrès, E.; Fossard, F.; Lévesque, P. L.; Phaneuf-L'Heureux, A. L.; Tang, N.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Eprint Arxiv 2014, 1408, 0345.
[52] Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K. S.; Cho, E.; Sangwan, V. K.; Liu, X.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Nano Lett. 2014, 14, 6964.
[53] Avsar, A.; Vera-Marun, I. J.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Castro Neto, A. H.; Özyilmaz, B. ACS Nano 2015, 9, 4138.
[54] (a) Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. Nature Nanotech. 2010, 5, 722.
(b) Lee, G.-H.; Yu, Y.-J.; Lee, C.; Dean, C.; Shepard, K. L.; Kim, P.; Hone, J. Appl. Phys. Lett. 2011, 99, 243114.

Outlines

/