Review

Research Progress of Photonic Crystal Solar Cells

  • Zhao Cong ,
  • Ma Ying ,
  • Wang Yang ,
  • Zhou Xue ,
  • Li Huizeng ,
  • Li Mingzhu ,
  • Song Yanlin
Expand
  • a School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168;
    b Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190

Received date: 2017-07-16

  Online published: 2017-10-10

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21522308, 21103112, 51573192, 51473173 and 21421061), the Natural Science Foundation of Liaoning Province (No. 20170540768), and China Postdoctoral Science Foundation (No. 2014M560225).

Abstract

Photonic crystals have been widely used in solar cells in recent years, owing to the characteristic photonic bandgap, "slow photon" effect and a series of unique light control performance. The introduction of photonic crystals can greatly optimize the propagation and distribution of light in solar cells. Photonic crystals can improve the performance of solar cells from five aspects:(1) Photonic crystals constructed as back mirrors to reduce light loss and increase absorption efficiency of solar cell. (2) The interaction between photons and sensitizers can be enhanced by the "slow photon effect" of the photonic crystal band gap, which enhances the excitation efficiency. (3) Photonic crystal can be used as a scattering layer, increasing the propagation path of light in the material, forming a resonance enhancement mode in the absorption layer, and improving the light absorption efficiency. (4) Photonic crystals have large specific surface area. Especially three-dimensional photonic crystals can provide excellent carrier for sensitizer, which can effectively increase the load and activity of sensitized molecules and improve the photoelectric conversion efficiency (5) Photonic crystals can be used to reduce the dependence of solar cells on the incident angle of sunlight. For example, when the incident light is tilted, the blue shift of the Bragg position results in more overlap with the dye absorption peak, generating a higher efficiency that partially compensates the reduced photon flux due to light inclination. However, photonic crystals in different locations of the solar cell will improve or inhibit photoelectric conversion efficiency. Therefore, the fully understanding of light manipulation of photonic crystals and their correctly application is the key to improve the photoelectric conversion efficiency. Here, the applications of different types of photonic crystals in silicon solar cells and sensitized solar cells are summarized, at the same time the possible problems are also analyzed and reviewed.

Cite this article

Zhao Cong , Ma Ying , Wang Yang , Zhou Xue , Li Huizeng , Li Mingzhu , Song Yanlin . Research Progress of Photonic Crystal Solar Cells[J]. Acta Chimica Sinica, 2018 , 76(1) : 9 -21 . DOI: 10.6023/A17070320

References

[1] Grätzel, M. Nature 2001, 414, 338.
[2] Yu, M.; Long, Y.-Z.; Sun, B.; Fan, Z. Nanoscale 2012, 4, 2783.
[3] Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G. Nature 2012, 485, 486.
[4] Polman, A.; Atwater, H. A. Nat. Mater. 2012, 11, 174.
[5] Graetzel, M.; Janssen, R. A. J.; Mitzi, D. B.; Sargent, E. H. Nature 2012, 488, 304.
[6] Yu, E. T.; Van De Lagemaat, J. MRS Bull. 2011, 36, 424.
[7] John, S. Phys. Rev. Lett. 1987, 58, 2486.
[8] Yablonovitch, E. Phys. Rev. Lett. 1987, 58, 2059.
[9] Akahane, Y.; Asano, T.; Song, B.-S.; Noda, S. Nature 2003, 425, 944.
[10] Mekis, A.; Chen, J.; Kurland, I.; Fan, S.; Villeneuve, P. R.; Joannopoulos, J. Phys. Rev. Lett. 1996, 77, 3787.
[11] Joannopoulos, J. D.; Villeneuve, P. R.; Fan, S. Nature 1997, 386, 143.
[12] Arsenault, A.; Fleischhaker, F.; Von Freymann, G.; Kitaev, V.; Miguez, H.; Mihi, A.; Tétreault, N.; Vekris, E.; Manners, I.; Aitchison, S.; Perovic, D.; Ozin, G. A. Adv. Mater. 2006, 18, 2779.
[13] Braun, P. V.; Rinne, S. A.; García-Santamaría, F. Adv. Mater. 2006, 18, 2665.
[14] Chen, J. I. L.; Von Freymann, G.; Choi, S. Y.; Kitaev, V.; Ozin, G. A. J. Mater. Chem. 2008, 18, 369.
[15] Nishimura, S.; Abrams, N.; Lewis, B. A.; Halaoui, L. I.; Mallouk, T. E.; Benkstein, K. D.; Van De Lagemaat, J.; Frank, A. J. J. Am. Chem. Soc. 2003, 125, 6306.
[16] Nojima, S. J. Appl. Phys. 2001, 90, 545.
[17] Bermel, P.; Luo, C.; Zeng, L.; Kimerling, L. C.; Joannopoulos, J. D. Opt. Express 2007, 15, 16986.
[18] Chen, J. I.; Von Freymann, G.; Choi, S. Y.; Kitaev, V.; Ozin, G. A. J. Mater. Chem. 2008, 18, 369.
[19] O'brien, P. G.; Kherani, N. P.; Chutinan, A.; Ozin, G. A.; John, S.; Zukotynski, S. Adv. Mater. 2008, 20, 1577.
[20] Herzinger, C. M.; Johs, B.; Mcgahan, W. A.; Woollam, J. A.; Paulson, W. J. Appl. Phys. 1998, 83, 3323.
[21] Wan, L.; Zhang, M.; Wang, J.; Jiang, L. Acta Chim. Sinica 2016, 74, 639. (万伦, 张漫波, 王京霞, 江雷, 化学学报, 2016, 74, 639.)
[22] Yang, K.-H.; Yang, J.-Y. Sol. Energy 2009, 83, 2050.
[23] Campbell, P.; Green, M. A. J. Appl. Phys. 1987, 62, 243.
[24] Feitknecht, L.; Steinhauser, J.; Schlüchter, R.; Faÿ, S.; Dominé, D.; Vallat-Sauvin, E.; Meillaud, F.; Ballif, C.; Shah, A. In Technical digest of the 15th International Photovoltaic Science and Engineering Conference, EPFL, Shanghai, 2005, pp. 473~474.
[25] Bender, H.; Szlufcik, J.; Nussbaumer, H.; Palmers, G.; Evrard, O.; Nijs, J.; Mertens, R.; Bucher, E.; Willeke, G. Appl. Phys. Lett. 1993, 62, 2941.
[26] Gale, M. T.; Curtis, B. J.; Kiess, H. G.; Morf, R. H. In The International Congress on Optical Science and Engineering, SPIE, Hague, 1990, pp. 60~66.
[27] Feng, N.-N.; Michel, J.; Zeng, L.; Liu, J.; Hong, C.-Y.; Kimerling, L. C.; Duan, X. IEEE Trans. Electron Devices 2007, 54, 1926.
[28] Zaidi, S. H.; Marquadt, R.; Minhas, B.; Tringe, J. In Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE, IEEE, New Orleans, 2002, pp. 1290~1293.
[29] Virtanen, H.; Aho, A. T.; Viheriälä, J.; Korpijärvi, V. M.; Uusitalo, T.; Koskinen, M.; Dumitrescu, M.; Guina, M. IEEE Photonics Technol. Lett. 2017, 29, 114.
[30] Zhao, X.; Zhang, Y.; Zhang, Q.; Zou, B.; Schwingenschlogl, U. Sci. Rep. 2016, 6, 21125.
[31] Mitra, S.; Ghosh, H.; Saha, H.; Kumar Datta, S.; Chaudhuri, P.; Banerjee, C. Opt. Commun. 2017, 397, 1.
[32] Mellor, A.; Hylton, N. P.; Maier, S. A.; Ekins-Daukes, N. Sol. Energy Mater. Sol. Cells 2017, 159, 212.
[33] Mihi, A.; Miguez, H. J. Phys. Chem. B 2005, 109, 15968.
[34] Zeng, L.; Yi, Y.; Hong, C.-Y.; Duan, X.; Kimerling, L. C. MRS Online Proc. Libr. 2011, 862,
[35] Zeng, L.; Yi, Y.; Hong, C.; Liu, J.; Feng, N.; Duan, X.; Kimerling, L. C.; Alamariu, B. A. Appl. Phys. Lett. 2006, 89, 111111.
[36] Colodrero, S.; Mihi, A.; Häggman, L.; Ocaña, M.; Boschloo, G.; Hagfeldt, A.; Míguez, H. Adv. Mater. 2009, 21, 764.
[37] Colodrero, S.; Forneli, A.; López-López, C.; Pellejà, L.; Míguez, H.; Palomares, E. Adv. Funct. Mater. 2012, 22, 1303.
[38] Colonna, D.; Colodrero, S.; Lindstrom, H.; Di Carlo, A.; Miguez, H. Energy Environ. Sci. 2012, 5, 8238.
[39] Colodrero, S.; Ocaña, M.; Míguez, H. Langmuir 2008, 24, 4430.
[40] Lopez-Lopez, C.; Colodrero, S.; Miguez, H. Phys. Chem. Chem. Phys. 2014, 16, 663.
[41] Zhang, X.-L.; Song, J.-F.; Li, X.-B.; Feng, J.; Sun, H.-B. Appl. Phys. Lett. 2012, 101, 243901.
[42] Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643.
[43] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.
[44] Mcmeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Hörantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Science 2016, 351, 151.
[45] Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu, J.; Zhang, X.; You, J. Nat. Energy 2016, 2, 16177.
[46] Fei, C.; Li, B.; Zhang, R.; Fu, H.; Tian, J.; Cao, G. Adv. Energy Mater. 2017, 7, 1602017.
[47] Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-B.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Science 2014, 345, 542.
[48] Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-J.; Sarkar, A.; Nazeeruddinmd, K.; Grätzel, M.; Seok, S. I. Nat. Photonics 2013, 7, 486.
[49] Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Nature 2015, 517, 476.
[50] Pellet, N.; Gao, P.; Gregori, G.; Yang, T.-Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M. Angew. Chem. Int. Ed. 2014, 53, 3151.
[51] Chakraborty, S.; Xie, W.; Mathews, N.; Sherburne, M.; Ahuja, R.; Asta, M.; Mhaisalkar, S. G. ACS Energy Lett. 2017, 2, 837.
[52] Wang, B.; Xiao, X.; Chen, T. Nanoscale 2014, 6, 12287.
[53] Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764.
[54] Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Energy Environ. Sci. 2014, 7, 982.
[55] Zhang, W.; Anaya, M.; Lozano, G.; Calvo, M. E.; Johnston, M. B.; Míguez, H.; Snaith, H. J. Nano Lett. 2015, 15, 1698.
[56] Ramos, F. J.; Oliva-Ramirez, M.; Nazeeruddin, M. K.; Graetzel, M.; Gonzalez-Elipe, A. R.; Ahmad, S. J. Mater. Chem. A 2016, 4, 4962.
[57] Li, Y.; Qi, L. Acta Chim. Sinica 2015, 73, 869. (李扬, 齐利民, 化学学报, 2015, 73, 869.)
[58] Umh, H. N.; Yu, S.; Kim, Y. H.; Lee, S. Y.; Yi, J. ACS Appl. Mater. Interfaces 2016, 8, 15802.
[59] Qin, M.; Li, X.; Zheng, Y.; Zhang, Y.; Li, C. Acta Chim. Sinica 2015, 73, 1161. (秦咪咪, 李昕, 郑一平, 张焱, 李从举, 化学学报, 2015, 73, 1161.)
[60] Xie, K.; Guo, M.; Huang, H. J. Mater. Chem. C 2015, 3, 10665.
[61] Yip, C. T.; Huang, H.; Zhou, L.; Xie, K.; Wang, Y.; Feng, T.; Li, J.; Tam, W. Y. Adv. Mater. 2011, 23, 5624.
[62] Osterloh, F. E. Chem. Soc. Rev. 2013, 42, 2294.
[63] Subramanian, A.; Wang, H.-W. Appl. Surf. Sci. 2012, 258, 6479.
[64] Yang, S.; Xue, H.; Wang, H.; Kou, H.; Wang, J.; Zhu, G. J. Phys. Chem. Solids 2012, 73, 911.
[65] Zhang, X.; Liu, F.; Huang, Q.-L.; Zhou, G., Wang, Z.-S. J. Phys. Chem. C 2011, 115, 12665.
[66] Cottineau, T.; Béalu, N.; Gross, P.-A.; Pronkin, S. N.; Keller, N.; Savinova, E. R.; Keller, V. J. Mater. Chem. A 2013, 1, 2151.
[67] Guo, M.; Xie, K.; Wang, Y.; Zhou, L.; Huang, H. Sci. Rep. 2014, 4, 6442.
[68] Guo, M.; Xie, K.; Lin, J.; Yong, Z.; Yip, C. T.; Zhou, L.; Wang, Y.; Huang, H. Energy Environ. Sci. 2012, 5, 9881.
[69] Guo, M.; Xie, K.; Liu, X.; Wang, Y.; Zhou, L.; Huang, H. Nanoscale 2014, 6, 13060.
[70] Meng, K.; Gao, S.; Wu, L.; Wang, G.; Liu, X.; Chen, G.; Liu, Z.; Chen, G. Nano Lett. 2016, 16, 4166.
[71] Horantner, M. T.; Zhang, W.; Saliba, M.; Wojciechowski, K.; Snaith, H. J. Energy Environ. Sci. 2015, 8, 2041.
[72] Zhang, L.; Hörantner, M. T.; Zhang, W.; Yan, Q.; Snaith, H. J. Sol. Energy Mater. Sol. Cells 2017, 160, 193.
[73] Kang, S. M.; Jang, S.; Lee, J.-K.; Yoon, J.; Yoo, D.-E.; Lee, J.-W.; Choi, M.; Park, N.-G. Small 2016, 12, 2443.
[74] Tavakoli, M. M.; Tsui, K.-H.; Zhang, Q.; He, J.; Yao, Y.; Li, D.; Fan, Z. ACS Nano 2015, 9, 10287.
[75] Heo, S. Y.; Koh, J. K.; Kang, G.; Ahn, S. H.; Chi, W. S.; Kim, K.; Kim, J. H. Adv. Energy Mater. 2014, 4, 1300632.
[76] Mihi, A.; Calvo, M. E.; Anta, J.; Miguez, H. J. Phys. Chem. C 2008, 112, 13.
[77] Yip, C.-H.; Chiang, Y.-M.; Wong, C.-C. J. Phys. Chem. C 2008, 112, 8735.
[78] Halaoui, L. I.; Abrams, N. M.; Mallouk, T. E. J. Phys. Chem. B 2005, 109, 6334.
[79] Mihi, A.; Míguez, H.; Rodríguez, I.; Rubio, S.; Meseguer, F. Phys. Rev. B 2005, 71, 125131.
[80] Lee, S.-H. A.; Abrams, N. M.; Hoertz, P. G.; Barber, G. D.; Halaoui, L. I.; Mallouk, T. E. J. Phys. Chem. B 2008, 112, 14415.
[81] Guldin, S.; Huttner, S.; Kolle, M.; Welland, M. E.; Muller-Buschbaum, P.; Friend, R. H.; Steiner, U.; Tetreault, N. Nano Lett. 2010, 10, 2303.
[82] Diguna, L. J.; Shen, Q.; Kobayashi, J.; Toyoda, T. Appl. Phys. Lett. 2007, 91, 023116.
[83] Xiao, J.; Huang, Q.; Xu, J.; Li, C.; Chen, G.; Luo, Y.; Li, D.; Meng, Q. J. Phys. Chem. C 2014, 118, 4007.
[84] Toyoda, T.; Shen, Q. J. Phys. Chem. Lett. 2012, 3, 1885.
[85] El Harakeh, M.; Halaoui, L. J. Phys. Chem. C 2010, 114, 2806.
[86] Chen, X.; Yang, S.; Zheng, Y. C.; Chen, Y.; Hou, Y.; Yang, X. H.; Yang, H. G. Adv. Sci. 2015, 2, 1500105.

Outlines

/