Acta Chimica Sinica ›› 2018, Vol. 76 ›› Issue (1): 9-21.DOI: 10.6023/A17070320 Previous Articles     Next Articles

Review

光子晶体太阳能电池研究进展

赵聪a, 马颖a, 汪洋b, 周雪b, 李会增b, 李明珠b, 宋延林b   

  1. a 沈阳建筑大学 材料科学与工程学院 沈阳 110168;
    b 中国科学院化学研究所 绿色印刷实验室 北京 100190
  • 投稿日期:2017-07-16 发布日期:2017-10-10
  • 通讯作者: 马颖, 李明珠 E-mail:may171@iccas.ac.cn;mingzhu@iccas.ac.cn
  • 作者简介:赵聪,1990年出生,硕士生.目前研究主要包括光子晶体、LED等光电功能材料方向;李明珠,博士,研究员.目前研究内容主要包括光子晶体、等离激元等多级微纳结构光学天线的构筑及其在传感和光电器件中的应用;马颖,博士,副教授.目前研究内容主要包括功能化石墨烯材料及有机光电功能材料的制备与性能研究.
  • 基金资助:

    项目受国家自然科学基金(Nos.21522308,21103112,51573192,51473173and21421061)、辽宁省自然科学基金(No.20170540768)和中国博士后科学基金(No.2014M560225)资助.

Research Progress of Photonic Crystal Solar Cells

Zhao Conga, Ma Yinga, Wang Yangb, Zhou Xueb, Li Huizengb, Li Mingzhub, Song Yanlinb   

  1. a School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168;
    b Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190
  • Received:2017-07-16 Published:2017-10-10
  • Contact: 10.6023/A17070320 E-mail:may171@iccas.ac.cn;mingzhu@iccas.ac.cn
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Nos. 21522308, 21103112, 51573192, 51473173 and 21421061), the Natural Science Foundation of Liaoning Province (No. 20170540768), and China Postdoctoral Science Foundation (No. 2014M560225).

Photonic crystals have been widely used in solar cells in recent years, owing to the characteristic photonic bandgap, "slow photon" effect and a series of unique light control performance. The introduction of photonic crystals can greatly optimize the propagation and distribution of light in solar cells. Photonic crystals can improve the performance of solar cells from five aspects:(1) Photonic crystals constructed as back mirrors to reduce light loss and increase absorption efficiency of solar cell. (2) The interaction between photons and sensitizers can be enhanced by the "slow photon effect" of the photonic crystal band gap, which enhances the excitation efficiency. (3) Photonic crystal can be used as a scattering layer, increasing the propagation path of light in the material, forming a resonance enhancement mode in the absorption layer, and improving the light absorption efficiency. (4) Photonic crystals have large specific surface area. Especially three-dimensional photonic crystals can provide excellent carrier for sensitizer, which can effectively increase the load and activity of sensitized molecules and improve the photoelectric conversion efficiency (5) Photonic crystals can be used to reduce the dependence of solar cells on the incident angle of sunlight. For example, when the incident light is tilted, the blue shift of the Bragg position results in more overlap with the dye absorption peak, generating a higher efficiency that partially compensates the reduced photon flux due to light inclination. However, photonic crystals in different locations of the solar cell will improve or inhibit photoelectric conversion efficiency. Therefore, the fully understanding of light manipulation of photonic crystals and their correctly application is the key to improve the photoelectric conversion efficiency. Here, the applications of different types of photonic crystals in silicon solar cells and sensitized solar cells are summarized, at the same time the possible problems are also analyzed and reviewed.

Key words: photonic crystal, silicon solar cell, dye-sensitized solar cell, quantum dot sensitized solar cell, perovskite solar cell