Review

A Review: Biodegradation Strategy of Graphene-Based Materials

  • Zhao Keli ,
  • Hao Ying ,
  • Zhu Mo ,
  • Cheng Guosheng
Expand
  • a CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu 215123;
    b University of Chinese Academy of Sciences, Beijing 100049;
    c University of Shanghai, Shanghai 200444

Received date: 2017-11-22

  Online published: 2018-01-09

Supported by

Project supported by the National Key Basic Research Program of China (973 Program, No. 2014CB965003).

Abstract

Since its discovery in 2004, the new frontier materials graphene and its derivatives have attracted a great deal of attention on the fields of new batteries, sensors, new energy and biomedicine, due to their unique electrical, optical and mechanical properties. Specifically, it has been developed rapidly in the biomedical field. The good biocompatibility has endowed graphene and its derivatives great prospects for their biological applications. In order to realize the in vivo application of graphene materials and improve the safety of the environment and life system, it is crucial to consider and study on the biodegradation behaviors of graphene. The research on biodegradation of graphene currently mainly focuses on the enzymatic degradation. The degradation behaviors can be tuned by the modification via a series of methods, such as heterogeneous atom doping and surface functionalization, etc. The progress of biodegradation of graphene and their derivatives, especially the enzymatic degradation and their biomedical applications is discussed. The important basis and guidance to further promote the in vivo study of graphene materials will be provided.

Cite this article

Zhao Keli , Hao Ying , Zhu Mo , Cheng Guosheng . A Review: Biodegradation Strategy of Graphene-Based Materials[J]. Acta Chimica Sinica, 2018 , 76(3) : 168 -176 . DOI: 10.6023/A17110499

References

[1] Zhang, Y.; Zheng, J.; Guo, M. Chin. J. Chem. 2016, 34, 1268.
[2] Jiang, S.; Qiu, H.; Gao, S.; Chen, P.; Li, Z.; Yu, K.; Yue, W.; Yang, C.; Huo, Y.; Wang, S. Chin. J. Chem. 2016, 34, 1039.
[3] Zhou, P.; He, D. Chin. J. Chem. 2016, 34, 795.
[4] Gu, X.; Zhang, S.; Hou, Y. Chin. J. Chem. 2016, 34, 13.
[5] Liu, D.; Zhang, C.; Lv, X.; Zheng, X.; Zhang, L.; Zhi, L.; Yang, Q.-H. Chin. J. Chem. 2016, 34, 41.
[6] Chen, W.; Sin, M.; Wei, P.-J.; Zhang, Q.-L.; Liu, J.-G. Chin. J. Chem. 2016, 34, 878.
[7] Liu, Z.; Chen, W.; Fan, X.; Yu, J.; Zhao, Y. Chin. J. Chem. 2016, 34, 839.
[8] Gao, Y.; Wang, T.; Liu, F. Chin. J. Chem. 2016, 34, 1297.
[9] Wang, C.; Guo, Z.; Zhang, L.; Zhang, N.; Zhang, K.; Fei, B.; Wang, H.; Xu, J.; Shi, H.; Qin, M.; Ren, L.; Wu, X. Chin. J. Chem. 2016, 34, 1151.
[10] Zhang, J.; Jiang, M.; Xing, L.; Qin, K.; Liu, T.; Zhou, J.; Si, W.; Cui, H.; Zhuo, S. Chin. J. Chem. 2016, 34, 46.
[11] Zhou, Q.; Chen, S.; Zhang, M.; Wang, L.; Li, Y.; Shi, G. Chin. J. Chem. 2016, 34, 59.
[12] Fan, X.; Yang, Z.; Liu, Z. Chin. J. Chem. 2016, 34, 107.
[13] Wang, R.; Jia, P.; Yang, Y.; An, N.; Zhang, Y.; Wu, H.; Hu, Z. Chin. J. Chem. 2016, 34, 114.
[14] Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132.
[15] Liang, T.; Kong, Y.; Chen, H.; Xu, M. Chin. J. Chem. 2016, 34, 32.
[16] Zhang, Y.; Zhang, L.; Zhou, C. Acc. Chem. Res. 2013, 46, 2329.
[17] Zhao, D.; Li, Z.; Liu, L.; Zhang, Y.; Ren, D.; Li, J. Acta Chim. Sinica 2014, 72, 185. (赵冬梅, 李振伟, 刘领弟, 张艳红, 任德财, 李坚, 化学学报, 2014, 72, 185.)
[18] Li, N.; Zhang, Q.; Gao, S.; Song, Q.; Huang, R.; Wang, L.; Liu, L.; Dai, J.; Tang, M.; Cheng, G. Sci. Rep. 2013, 3, 1604.
[19] Xiao, M.; Kong, T.; Wang, W.; Song, Q.; Zhang, D.; Ma, Q.; Cheng, G. Adv. Funct. Mater. 2015, 25, 6165.
[20] Lee, S. H.; Kim, H. W.; Hwang, J. O.; Lee, W. J.; Kwon, J.; Bielawski, C. W.; Ruoff, R. S.; Kim, S. O. Angew. Chem. 2010, 49, 10084.
[21] Jakus, A. E.; Secor, E. B.; Rutz, A. L.; Jordan, S. W.; Hersam, M. C.; Shah, R. N. ACS Nano 2015, 9, 4636.
[22] Cao, X.; Yin, Z.; Zhang, H. Energy Environ. Sci. 2014, 7, 1850.
[23] Wu, J.; Zhou, A.; Huang, Z.; Li, L.; Bai, H. Chin. J. Chem. 2016, 34, 67.
[24] Liu, Y.; Dong, X.; Chen, P. Chem. Soc. Rev. 2012, 41, 2283.
[25] Zhao, H.; Ding, R.; Zhao, X.; Li, Y.; Qu, L.; Pei, H.; Yildirimer, L.; Wu, Z.; Zhang, W. Drug Discovery Today 2017, 22, 1302.
[26] Cheng, J.; Wan, W.; Zhu, W. Chin. J. Chem. 2016, 34, 53.
[27] Li, Y.; Zhang, Y.; Han, G.; Xiao, Y.; Li, M.; Zhou, W. Chin. J. Chem. 2016, 34, 82.
[28] Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. J. Am. Chem. Soc. 2008, 130, 10876.
[29] Liu, J.; Cui, L.; Losic, D. Acta Biomater. 2013, 9, 9243.
[30] Feng, L.; Zhang, S.; Liu, Z. Nanoscale 2011, 3, 1252.
[31] Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N. G.; Wu, T.; Li, L.; Li, J.; Gan, L. H. Small 2011, 7, 1569.
[32] Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Nano Lett. 2008, 8, 36.
[33] Fan, W.; Miao, Y.-E.; Ling, X.; Liu, T. Chin. J. Chem. 2016, 34, 73.
[34] Kong, L.; Zhou, X.; Fan, S.; Li, Z.; Gu, Z. Acta Chim. Sinica 2016, 74, 620. (孔丽娟, 周晓燕, 范赛英, 李在均, 顾志国, 化学学报, 2016, 74, 620.)
[35] Huang, J.; Zong, C.; Shen, H.; Liu, M.; Chen, B.; Ren, B.; Zhang, Z. Small 2012, 8, 2577.
[36] Feng, L.; Wu, L.; Qu, X. Adv. Mater. 2013, 25, 168.
[37] Du, Y.; Guo, S. Nanoscale 2016, 8, 2532.
[38] Lin, J.; Chen, X.; Huang, P. Adv. Drug Delivery Rev. 2016, 105, 242.
[39] Keisham, B.; Cole, A.; Nguyen, P.; Mehta, A.; Berry, V. ACS Appl. Mater. Interfaces 2016, 8, 32717.
[40] Meng, F.; Lu, W.; Li, Q.; Byun, J.-H.; Oh, Y.; Chou, T.-W. Adv. Mater. 2015, 27, 5113.
[41] Wu, X.; Ding, S.-J.; Lin, K.; Su, J. J. Mater. Chem. B 2017, 5, 3084.
[42] Li, N.; Zhang, X.; Song, Q.; Su, R.; Zhang, Q.; Kong, T.; Liu, L.; Jin, G.; Tang, M.; Cheng, G. Biomaterials 2011, 32, 9374.
[43] Qi, L.; Li, N.; Huang, R.; Song, Q.; Wang, L.; Zhang, Q.; Su, R.; Kong, T.; Tang, M.; Cheng, G. PLoS One 2013, 8, e59022.
[44] Song, Q.; Jiang, Z.; Li, N.; Liu, P.; Liu, L.; Tang, M.; Cheng, G. Biomaterials 2014, 35, 6930.
[45] Ulloa Severino, F. P.; Ban, J.; Song, Q.; Tang, M.; Bianconi, G.; Cheng, G.; Torre, V. Sci. Rep. 2016, 6, 29640.
[46] Bitounis, D.; Ali-Boucetta, H.; Hong, B. H.; Min, D.-H.; Kostarelos, K. Adv. Mater. 2013, 25, 2258.
[47] Zhang, H.; Peng, C.; Yang, J.; Lv, M.; Liu, R.; He, D.; Fan, C.; Huang, Q. ACS Appl. Mater. Interfaces 2013, 5, 1761.
[48] Wang, I. N. E.; Robinson, J. T.; Do, G.; Hong, G.; Gould, D. R.; Dai, H.; Yang, P. C. Small 2014, 10, 1479.
[49] Depan, D.; Girase, B.; Shah, J. S.; Misra, R. D. K. Acta Biomater. 2011, 7, 3432.
[50] Murray, E.; Thompson, B. C.; Sayyar, S.; Wallace, G. G. Polym. Degrad. Stabil. 2015, 111, 71.
[51] Singh, S. K.; Singh, M. K.; Nayak, M. K.; Kumari, S.; Shrivastava, S.; Grácio, J. J. A.; Dash, D. ACS Nano 2011, 5, 4987.
[52] Zhang, X.; Yin, J.; Peng, C.; Hu, W.; Zhu, Z.; Li, W.; Fan, C.; Huang, Q. Carbon 2011, 49, 986.
[53] Yang, K.; Wan, J.; Zhang, S.; Zhang, Y.; Lee, S.-T.; Liu, Z. ACS Nano 2011, 5, 516.
[54] Sasidharan, A.; Swaroop, S.; Koduri, C. K.; Girish, C. M.; Chandran, P.; Panchakarla, L. S.; Somasundaram, V. H.; Gowd, G. S.; Nair, S.; Koyakutty, M. Carbon 2015, 95, 511.
[55] Duch, M. C.; Budinger, G. R. S.; Liang, Y. T.; Soberanes, S.; Urich, D.; Chiarella, S. E.; Campochiaro, L. A.; Gonzalez, A.; Chandel, N. S.; Hersam, M. C.; Mutlu, G. M. Nano Lett. 2011, 11, 5201.
[56] Shen, J.; Zhu, Y.; Chen, C.; Yang, X.; Li, C. Chem. Commun. 2011, 47, 2580.
[57] Pan, D.; Zhang, J.; Li, Z.; Wu, M. Adv. Mater. 2010, 22, 734.
[58] Zhu, S.; Zhang, J.; Qiao, C.; Tang, S.; Li, Y.; Yuan, W.; Li, B.; Tian, L.; Liu, F.; Hu, R.; Gao, H.; Wei, H.; Zhang, H.; Sun, H.; Yang, B. Chem. Commun. 2011, 47, 6858.
[59] Li, L.-L.; Ji, J.; Fei, R.; Wang, C.-Z.; Lu, Q.; Zhang, J.-R.; Jiang, L.-P.; Zhu, J.-J. Adv. Funct. Mater. 2012, 22, 2971.
[60] Bai, H.; Jiang, W.; Kotchey, G. P.; Saidi, W. A.; Bythell, B. J.; Jarvis, J. M.; Marshall, A. G.; Robinson, R. A. S.; Star, A. J. Phys. Chem. C 2014, 118, 10519.
[61] Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J.-J. Nanoscale 2013, 5, 4015.
[62] Zhang, L.; Petersen, E. J.; Habteselassie, M. Y.; Mao, L.; Huang, Q. Environ. Prog. 2013, 181, 335.
[63] Schreiner, K. M.; Filley, T. R.; Blanchette, R. A.; Bowen, B. B.; Bolskar, R. D.; Hockaday, W. C.; Masiello, C. A.; Raebiger, J. W. Environmen. Sci. Technol. 2009, 43, 3162.
[64] Liu, L.; Zhu, C.; Fan, M.; Chen, C.; Huang, Y.; Hao, Q.; Yang, J.; Wang, H.; Sun, D. Nanoscale 2015, 7, 13619.
[65] Girish, C. M.; Sasidharan, A.; Gowd, G. S.; Nair, S.; Koyakutty, M. Adv. Healthcare Mater. 2013, 2, 1489.
[66] Kotchey, G. P.; Hasan, S. A.; Kapralov, A. A.; Ha, S. H.; Kim, K.; Shvedova, A. A.; Kagan, V. E.; Star, A. Acc. Chem. Res. 2012, 45, 1770.
[67] Kotchey, G. P.; Zhao, Y.; Kagan, V. E.; Star, A. Adv. Drug Delivery Rev. 2013, 65, 1921.
[68] Vlasova, I. I.; Kapralov, A. A.; Michael, Z. P.; Burkert, S. C.; Shurin, M. R.; Star, A.; Shvedova, A. A.; Kagan, V. E. Toxicol. Appl. Pharm. 2016, 299, 58.
[69] Chen, M.; Qin, X.; Zeng, G. Trends Biotechnol. 2017, 35, 836.
[70] Xing, W.; Lalwani, G.; Rusakova, I.; Sitharaman, B. Part. Part. Syst. Charact. 2014, 31, 745.
[71] Allen, B. L.; Kichambare, P. D.; Gou, P.; Vlasova, I. I.; Kapralov, A. A.; Konduru, N.; Kagan, V. E.; Star, A. Nano Lett. 2008, 8, 3899.
[72] Kotchey, G. P.; Allen, B. L.; Vedala, H.; Yanamala, N.; Kapralov, A. A.; Tyurina, Y. Y.; Klein-Seetharaman, J.; Kagan, V. E.; Star, A. ACS Nano 2011, 5, 2098.
[73] Filizola, M.; Loew, G. H. J. Am. Chem. Soc. 2000, 122, 18.
[74] Loeblein, M.; Perry, G.; Tsang, S. H.; Xiao, W.; Collard, D.; Coquet, P.; Sakai, Y.; Teo, E. H. T. Adv. Healthcare Mater. 2016, 5, 1177.
[75] Kurapati, R.; Russier, J.; Squillaci, M. A.; Treossi, E.; Ménard-Moyon, C.; Del Rio-Castillo, A. E.; Vazquez, E.; Samorì, P.; Palermo, V.; Bianco, A. Small 2015, 11, 3985.
[76] Kurapati, R.; Backes, C.; Ménard-Moyon, C.; Coleman, J. N.; Bianco, A. Angew. Chem., Int. Ed. 2016, 55, 5506.
[77] Sureshbabu, A. R.; Kurapati, R.; Russier, J.; Ménard-Moyon, C.; Bartolini, I.; Meneghetti, M.; Kostarelos, K.; Bianco, A. Biomaterials 2015, 72, 20.
[78] Andón, F. T.; Kapralov, A. A.; Yanamala, N.; Feng, W.; Baygan, A.; Chambers, B. J.; Hultenby, K.; Ye, F.; Toprak, M. S.; Brandner, B. D.; Fornara, A.; Klein-Seetharaman, J.; Kotchey, G. P.; Star, A.; Shvedova, A. A.; Fadeel, B.; Kagan, V. E. Small 2013, 9, 2721.
[79] ten Have, R.; Teunissen, P. J. M. Chem. Rev. 2001, 101, 3397.
[80] Hayashi, Y.; Yamazaki, I. J. Biol. Chem. 1979, 254, 9101.
[81] Arnhold, J. Biochemistry 2004, 69, 4.
[82] Valli, K.; Wariishi, H.; Gold, M. H. Biochemistry 1990, 29, 8535.
[83] Lalwani, G.; Xing, W.; Sitharaman, B. J. Mater. Chem. B 2014, 2, 6354.
[84] Rao, C. N. R.; Gopalakrishnan, K.; Govindaraj, A. Nano Today 2014, 9, 324.
[85] Zhang, Y.; Liang, Y.; Zhou, J. Acta Chim. Sinica 2014, 72, 367. (张芸秋, 梁勇明, 周建新, 化学学报, 2014, 72, 367.)
[86] Zhao, Y.; Allen, B. L.; Star, A. J. Phys. Chem. A 2011, 115, 9536.
[87] Wang, X.; Sun, G.; Routh, P.; Kim, D.-H.; Huang, W.; Chen, P. Chem. Soc. Rev. 2014, 43, 7067.
[88] Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W. Nano Lett. 2011, 11, 2472.
[89] Huang, G.-J.; Chen, Z.-G.; Li, M.-D.; Yang, B.; Xin, M.-L.; Li, S.-P.; Yin, Z.-J. Acta Chim. Sinica 2016, 74, 789. (黄国家, 陈志刚, 李茂东, 杨波, 辛明亮, 李仕平, 尹宗杰, 化学学报, 2016, 74, 789.)
[90] Bianco, A.; Kostarelos, K.; Prato, M. Chem. Commun. 2011, 47, 10182.
[91] Rajendra, K.; Fanny, B.; Julie, R.; Sureshbabu, A. R.; Cécilia, M.-M.; Kostas, K.; Alberto, B. 2D Materials 2017, inpress.
[92] Li, Y.; Feng, L.; Shi, X.; Wang, X.; Yang, Y.; Yang, K.; Liu, T.; Yang, G.; Liu, Z. Small 2014, 10, 1544.

Outlines

/