Review

Transition Metal Catalyzed Deoxydehydration of Alcohols

  • Li Cui ,
  • Zhang Qi ,
  • Fu Yao
Expand
  • a Department of Chemistry, University of Science and Technology of China, Hefei 230026;
    b Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009

Online published: 2018-05-14

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21325208, 21572212, 21732006, 21702041), Ministry of Science and Technology of China (No. 2017YFA0303500), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000), Fundamental Research Funds for the Central Universities, and Program for Changjiang Scholars and Innovative Research Team in University.

Abstract

In view of the depletion of fossil fuels, the development and utilization of environment-friendly and sustainable resources widely play an indispensable role in alleviating and resolving problems about resources and environment. Biomass could be utilized as biofuels and renewable platform chemicals. However, biomass-derived molecules are fairly oxygen-rich and hyperfunctionalized. Therefore, new synthetic routes for the regenerative production of chemicals, fuels, and energy from renewable biomass sources are currently investigated especially the routes of transforming high-oxygen-content biomassderived vicinal diols and poly vicinal alcohols into fuels and value-added chemicals. A range of reductive deoxygenation methods consisting of direct deoxygenation, pyrolysis, hydrogenolysis, decarbonylation, decarboxylation, hydrodeoxygenation, and deoxydehydration (DODH) are under investigation. In this review, we detail the recent-evolutionary and efficient strategies of transition metal-catalyzed DODH of vicinal diols into corresponding alkenes, including rhenium, molybdenum, vanadium, and ruthenium catalysts. Rhenium-catalyzed DODH reactions are very selective and active to provide high yields of olefin products, which keep important functionality in place as well as can be readily functionalized. Recent efforts in rhenium-mediated systems include the development of new rhenium catalysts, the application of cheaper and more available reductants, and growing mechanistic understandings owing to both theoretical and experimental studies. A new emerging trend within DODH is the development of heterogeneous rhenium-based catalysts which demonstrates their ability to rival and in some cases surpass their homogeneous counterparts. Furthermore, catalysts based on the transition metals molybdenum, vanadium and ruthenium show great potential as inexpensive alternatives to rhenium catalysts.

Cite this article

Li Cui , Zhang Qi , Fu Yao . Transition Metal Catalyzed Deoxydehydration of Alcohols[J]. Acta Chimica Sinica, 2018 , 76(7) : 501 -514 . DOI: 10.6023/A18040138

References

[1] Chu, S.; Majumdar, A. Nature 2012, 488, 294.
[2] Bruijnincx, P. C. A.; Weckhuysen, B. M. Angew. Chem. Int. Ed. 2013, 52, 11980.
[3] Song, F.; Ding, Y.; Zhao, C. Acta Chim. Sinica 2014, 72, 133(in Chinese). (宋芳源, 丁勇, 赵崇超, 化学学报, 2014, 72, 133.)
[4] Mohr, S. H.; Wang, J.; Ellem, G.; Ward, J.; Giurco, D. Fuel 2015, 141, 120.
[5] Sheldon, R. A. Green Chem. 2017, 19, 18.
[6] Zhao, C.; Ma, Y.; Wang, Y.; Zhou, X.; Li, H.; Li, M.; Song, Y. Acta Chim. Sinica 2018, 76, 9(in Chinese). (赵聪, 马颖, 汪洋, 周雪, 李会增, 李明珠, 宋延林, 化学学报, 2018, 76, 9.)
[7] Corma, A.; Iborra, S.; Velty, A. Chem. Rev. 2007, 107, 2411.
[8] Alonso, D. M.; Bond, J. Q.; Dumesic, J. A. Green Chem. 2010, 12, 1493.
[9] Besson, M.; Gallezot, P.; Pinel, C. Chem. Rev. 2014, 114, 1827.
[10] Wang, Y.; Hu, M.; Wang, Y.; Qin, Y.; Chen, H.; Zeng, L.; Lei, J.; Huang, X.; He, L.; Zhang, R.; Wu, Z. Acta Chim. Sinica 2016, 74, 356(in Chinese). (王玉珏, 胡敏, 王渝, 秦艳红, 陈红阳, 曾立民, 雷建容, 黄晓锋, 何凌燕, 张瑞芹, 吴志军, 化学学报, 2016, 74, 356.)
[11] Ding, S.; Ge, Q.; Zhu, X. Acta Chim. Sinica 2017, 75, 439(in Chinese). (丁爽, 葛庆峰, 祝新利, 化学学报, 2017, 75, 439.)
[12] Wang, H.; Zhao, Y.; Wang, C.; Fu, Y.; Guo, Q. Acta Chim. Sinica 2009, 67, 893(in Chinese). (王华静, 赵岩, 王晨, 傅尧, 郭庆祥, 化学学报, 2009, 67, 893.)
[13] Jiang, Y.; Yu, H.; Fu, Y. Acta Chim. Sinica 2013, 71, 1611(in Chinese). (蒋原野, 于海珠, 傅尧, 化学学报, 2013, 71, 1611.)
[14] Lian, Y.; Yan, L.; Wang, Y.; Qi, X. Acta Chim. Sinica 2014, 72, 502(in Chinese). (廉优芬, 闫碌碌, 王羽, 漆新华, 化学学报, 2014, 72, 502.)
[15] Zhang, X.; Wilson, K.; Lee, A. F. Chem. Rev. 2016, 116, 12328.
[16] Liu, X.; Yan, L.; Fu, Y. Acta Chim. Sinica 2017, 75, 788(in Chinese). (刘新鑫, 严龙, 傅尧, 化学学报, 2017, 75, 788.)
[17] Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Della Pina, C. Angew. Chem. Int. Ed. 2007, 46, 4434.
[18] Vennestrøm, P. N. R.; Osmundsen, C. M.; Christensen, C. H.; Taarning, E. Angew. Chem. Int. Ed. 2011, 50, 10502.
[19] Serrano-Ruiz, J. C.; Luque, R.; Sepúlveda-Escribano, A. Chem. Soc. Rev. 2011, 40, 5266.
[20] Gallezot, P. Chem. Soc. Rev. 2012, 41, 1538.
[21] Sullivan, R. J.; Latifi, E.; Chung, B. K.-M.; Soldatov, D. V.; Schlaf, M. Chem. Rev. 2014, 114, 1827.
[22] Yan, L.; Pang, H.; Huang, Y.; Fu, Y. Acta Chim. Sinica 2014, 72, 1005(in Chinese). (严龙, 庞欢, 黄耀兵, 傅尧, 化学学报, 2014, 72, 1005.)
[23] Li, J.; Huang, Y.; Guo, Q.; Fu, Y. Acta Chim. Sinica 2014, 72, 1223(in Chinese). (李江, 黄耀兵, 郭庆祥, 傅尧, 化学学报, 2014, 72, 1223.)
[24] Zhao, Y.; Deng, L.; Liao, B.; Fu, Y.; Guo, Q. Energy Fuels 2010, 24, 5735.
[25] Zhao, Y.; Fu, Y.; Guo, Q. Bioresour. Technol. 2012, 114, 740.
[26] Zhao, Y.; Pan, T.; Zuo, Y.; Guo, Q.; Fu, Y. Bioresour. Technol. 2013, 147, 37.
[27] Xu, L.; Zhang, Y.; Fu, Y. Energy Technol. 2016, 4, 1.
[28] Lai, D.; Deng, L.; Guo, Q.; Fu, Y. Energy Environ. Sci. 2011, 4, 3552.
[29] Zuo, Y.; Zhang, Y.; Fu, Y. ChemCatChem 2014, 6, 753.
[30] Ruppert, A. M.; Weinberg, K.; Palkovits, R. Angew. Chem. Int. Ed. 2012, 51, 2564.
[31] Maetani, S.; Fukuyama, T.; Suzuki, N.; Ishihara, D.; Ryu, I. Chem. Commun. 2012, 48, 2552.
[32] Huang, Y.; Yang, Z.; Chen, M.; Dai, J.; Guo, Q.; Fu, Y. ChemSusChem 2013, 6, 1348.
[33] Saidi, M.; Samimi, F.; Karimipourfard, D.; Nimmanwudipong, T.; Gates, B. C.; Rahimpou, M. R. Energy Environ. Sci. 2014, 7, 103.
[34] Chen, M.; Huang, Y.; Pang, H.; Liu, X.; Fu, Y. Green Chem. 2015, 17, 1710.
[35] Xu, G.; Guo, J.; Qu, Y.; Zhang, Y.; Fu, Y.; Guo, Q. Green Chem. 2016, 18, 5510.
[36] Li, J.; Liu, J.; Liu, H.; Xu, G.; Zhang, J.; Liu, J.; Zhou, G.; Li, Q.; Xu, Z.; Fu, Y. ChemSusChem 2017, 10, 1436.
[37] Liu, X.; Jia, W.; Xu, G.; Zhang, Y.; Fu, Y. ACS Sustainable Chem. Eng. 2017, 5, 8594.
[38] Korstanje, T. J.; Klein Gebbink, R. J. M. Top. Organomet. Chem. 2012, 39, 129.
[39] Dutta, S. ChemSusChem 2012, 5, 2125.
[40] Metzger, J. O. ChemCatChem 2013, 5, 680.
[41] Boucher-Jacobs, C.; Nicholas, K. M. Top. Curr. Chem. 2014, 353, 163.
[42] Mika, L. T.; Cséfalvay, E.; Horváth, I. T. Catal. Today 2015, 247, 33.
[43] Harms, R. G.; Herrmann, W. A.; Kühn, F. E. Coord. Chem. Rev. 2015, 296, 1.
[44] Nicholas, K. M. J. Org. Chem. 2015, 80, 6943.
[45] Makshina, E. V.; Dusselier, M.; Janssens, W.; Jan Degreve, J.; Jacobs, P. A.; Sels, B. F. Chem. Soc. Rev. 2014, 43, 7917.
[46] Raju, S.; Moret, M. E.; Klein Gebbink, R. J. M. ACS Catal. 2015, 5, 281.
[47] Mao, G. L.; Jia, B.; Wang, C. Y. Chin. J. Org. Chem. 2015, 35, 284(in Chinese). (毛国梁, 贾冰, 王从洋, 有机化学, 2015, 35, 284.)
[48] Dethlefsen, J. R.; Fristrup, P. ChemSusChem 2015, 8, 767.
[49] Petersen, A. R.; Fristrup, P. Chem.-Eur. J. 2017, 23, 10235.
[50] Romao, C. C.; Kuhn, F. E.; Herrmann, W. A. Chem. Rev. 1997, 97, 3197.
[51] Herrmann, W. A.; Kühn, F. E. Acc. Chem. Res. 1997, 30, 169.
[52] Wang, F.; Gao, K.; Wang, C. Acta Chim. Sinica 2007, 65, 2211(in Chinese). (王福冬, 高坤, 王长生, 化学学报, 2007, 65, 2211.)
[53] Chen, J.; Du, X.; Yu, T.; Zeng, Y.; Zhang, X.; Li, Y. Acta Chim. Sinica 2016, 74, 523(in Chinese). (陈金平, 都新丰, 于天君, 曾毅, 张小辉, 李嫕, 化学学报, 2016, 74, 523.)
[54] Abu-Omar, M. M.; Appelman, E. H.; Espenson, J. H. Inorg. Chem. 1996, 35, 7751.
[55] Gable, K. P. Adv. Organomet. Chem. 1997, 41, 127.
[56] Espenson, J. H. Adv. Inorg. Chem. 2003, 54, 157.
[57] Kühn, F. E.; Scherbaum, A.; Herrmann, W. A. J. Organomet. Chem. 2004, 689, 4149.
[58] Korstanje, T. J.; Jastrzebski, J. T. B. H.; Klein Gebbink, R. J. M. Chem.-Eur. J. 2013, 19, 13224.
[59] Korstanje, T. J.; de Waard, E. F.; Jastrzebski, J. T. B. H.; Klein Gebbink, R. J. M. ACS Catal. 2012, 2, 2173.
[60] Herrmann, W. A.; Marz, D.; Herdtweck, E.; Schiifer, A.; Wagner, W.; Kneuper, H. J. Angew. Chem. Int. Ed. 1987, 26, 462.
[61] Gable, K. P.; Phan, T. N. J. Am. Chem. Soc. 1994, 116, 833.
[62] Gable, K. P. Organometallics 1994, 13, 2486.
[63] Cook, G. K.; Andrews, M. A. J. Am. Chem. Soc. 1996, 118, 9448.
[64] Gable, K. P.; Ross, B. ACS Symposium Series, Vol. 921, Eds.:Bozell, J. J.; Patel, M. K. American Chemical Society, Washington, DC, 2006, Chapter 11.
[65] Bergman, R. G.; Cundari, T. R.; Gillespie, A. M.; Gunnoe, T. B.; Harman, W. D.; Klinckman, T. R.; Temple, M. D.; White, D. P. Organometallics 2003, 22, 2331.
[66] Raju, S.; Jastrzebski, J. T. B. H.; Lutz, M.; Klein Gebbink, R. J. M. ChemSusChem 2013, 6, 1673.
[67] Raju, S.; Jastrzebski, J. T. B. H.; Lutz, M.; Witteman, L.; Dethlefsen, J. R.; Fristrup, P.; Moret, M. E.; Klein Gebbink, R. J. M. Inorg. Chem. 2015, 54, 11031.
[68] Raju, S.; van Slagmaat, C. A. M. R.; Li, J.; Lutz, M.; Jastrzebski, J. T. B. H.; Moret, M. E.; Klein Gebbink, R. J. M. Organometallics 2016, 35, 2178.
[69] Yanagi, T.; Suzuki, H.; Oishi, M. Chem. Lett. 2013, 42, 1403.
[70] Shimogawa, R.; Takao, T.; Suzuki, H. Organometallics 2014, 33, 289.
[71] Sun, H. M.; Hu, C.; Hao, Z. M.; Zuo, Y. J.; Wang, T. C.; Zhong, C. M. Chin. J. Org. Chem. 2015, 35, 1904(in Chinese). (孙慧敏, 胡晨, 郝志明, 左亚杰, 王天赤, 仲崇民, 有机化学, 2015, 35, 1904.)
[72] Hillea, C.; Kühn, F. E. Dalton Trans. 2016, 45, 15.
[73] Ziegler, J. E.; Zdilla, M. J.; Evans, A. J.; Abu-Omar, M. M. Inorg. Chem. 2009, 48, 9998.
[74] Bi, S. W.; Wang, J. Y.; Liu, L. J.; Li, P.; Lin, Z. Y. Organometallics 2012, 31, 6139.
[75] Larson, R. T.; Samant, A.; Chen, J.; Lee, W.; Bohn, M. A.; Ohlmann, D. M.; Zuend, S. J.; Toste, F. D. J. Am. Chem. Soc. 2017, 139, 14001.
[76] Ahmad, I.; Chapman, G.; Nicholas, K. M. Inorg. Chem. 2010, 49, 4744.
[77] Vkuturi, S.; Chapman, G.; Ahmad, I.; Nicholas, K. M. Organometallics 2011, 30, 2810.
[78] Arceo, E.; Ellman, J. A.; Bergman, R. G. J. Am. Chem. Soc. 2010, 132, 11408.
[79] Sousa, S. C.; Fernandes, A. C. Tetrahedron Lett. 2011, 52, 6960.
[80] Yi, J.; Liu, S.; Abu-Omar, M. M. ChemSusChem 2012, 5, 1401.
[81] Canale, V.; Tonucci, L.; Bressana, M.; d'Alessandro, N. Catal. Sci. Technol. 2014, 4, 3697.
[82] Shiramizu, M.; Toste, F. D. Angew. Chem. Int. Ed. 2012, 51, 8082.
[83] Qu, S. L.; Dang, Y. F.; Wen, M. W.; Wang, Z. X. Chem.-Eur. J. 2013, 19, 3827.
[84] Boucher-Jacobs, C.; Nicholas, K. M. ChemSusChem 2013, 6, 597.
[85] Shiramizu, M.; Toste, F. D. Angew. Chem. Int. Ed. 2013, 52, 12905.
[86] Wang, G.; Jimtaisong, A.; Luck, R. L. Organometallics 2004, 23, 4522.
[87] Morrill, C.; Grubbs, R. H. J. Am. Chem. Soc. 2005, 127, 2842.
[88] Morrill, C.; Beutner, G. L.; Grubbs, R. H. J. Org. Chem. 2006, 71, 7813.
[89] Herrmann, A. T.; Saito, T.; Stivala, C. E.; Tom, J.; Zakarian, A. J. Am. Chem. Soc. 2010, 132, 5962.
[90] Davis, J.; Srivastava, R. S. Tetrahedron Lett. 2014, 55, 4178.
[91] Li, X. K.; Wu, D.; Lu, T.; Yi, G. S.; Su, H. B.; Zhang, Y. G. Angew. Chem. Int. Ed. 2014, 53, 4200.
[92] Shin, N.; Kwon, S.; Moon, S.; Hong, C. H.; Kim, Y. G. Tetrahedron 2017, 73, 4758.
[93] McClain, J. M.; Nicholas, K. M. ACS Catal. 2014, 4, 2109.
[94] Boucher-Jacobs, C.; Nicholas, K. M. Organometallics 2015, 34, 1985.
[95] Arterburn, J. B.; Liu, M.; Perry, M. C. Helv. Chim. Acta 2002, 85, 3225.
[96] Denning, A. L.; Dang, H.; Liu, Z.; Nicholas, K. M.; Jentoft, F. C. ChemCatChem 2013, 5, 3567.
[97] Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. Angew. Chem. Int. Ed. 2015, 54, 1897.
[98] Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. ACS Catal. 2016, 6, 3213.
[99] Tazawa, S.; Ota, N.; Tamura, M.; Nakagawa, Y.; Okumura, K.; Tomishige, K. ACS Catal. 2016, 6, 6393.
[100] Sandbrink, L.; Klindtworth, E.; Islam, H.; Beale, A. M.; Palkovits, R. ACS Catal. 2016, 6, 677.
[101] Li, X. K.; Zhang, Y. G. ChemSusChem 2016, 9, 2774.
[102] Hills, L.; Moyano, R.; Montilla, F.; Pastor, A.; Galindo, A.; Álvarez, E.; Marchetti, F.; Pettinari, C. Eur. J. Inorg. Chem. 2013, 3352.
[103] Dethlefsen, J. R.; Lupp, D.; Oh, B. C.; Fristrup, P. ChemSusChem 2014, 7, 425.
[104] Lupp, D.; Christensen, N. J.; Dethlefsen, J. R.; Fristrup, P. Chem.-Eur. J. 2015, 21, 3435.
[105] Dethlefsen, J. R.; Lupp, D.; Teshome, A.; Nielsen, L. B.; Fristrup, P. ACS Catal. 2015, 5, 3638.
[106] Beckerle, K.; Sauer, A.; Spaniol, T. P.; Okuda, J. Polyhedron 2016, 116, 105.
[107] Sandbrink, L.; Beckerle, K.; Meiners, I.; Liffmann, R.; Rahimi, K.; Okuda, J.; Palkovits, R. ChemSusChem 2017, 10, 1375.
[108] Chapman Jr., G.; Kenneth, M.; Nicholas, K. M. Chem. Commun. 2013, 49, 8199.
[109] Galindo, A. Inorg. Chem. 2016, 55, 2284.
[110] Poutas, L. C. V.; Reis, M. C.; Sanz, R.; Lopez, C. S.; Faza, O. N. Inorg. Chem. 2016, 55, 11372.
[111] Jiang, Y.; Jiang, J.; Fu, Y. Organometallics 2016, 35, 3388.
[112] Geary, L. M.; Chen, T. Y.; Montgomery, T. P.; Krische, M. J. J. Am. Chem. Soc. 2014, 136, 5920.
[113] Gopaladasu, T. V.; Nicholas, K. M. ACS Catal. 2016, 6, 1901.
[114] Kwok, K. M.; Choong, C. K. S.; Ong, D. S. W.; Ng, J. C. Q.; Gwie, C. G.; Chen, L.; Borgna, A. ChemCatChem 2017, 9, 2443.
[115] Stanowski, S.; Nicholas, K. M.; Srivastava, R. S. Organometallics 2012, 31, 515.

Outlines

/