Recent Developments in N-Heterocyclic Carbene and Transition-Metal Cooperative Catalysis
Received date: 2018-06-14
Online published: 2018-07-19
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21632003, 21572087), Key Program of Gansu Province (Nos. 17ZD2GC011), and the "111" Program from the MOE of P. R. China.
Recently, N-heterocyclic carbene (NHC) catalysis has achieved significant achievement in the field of cooperative catalysis. With the combination of other established catalysis modes (e.g., Lewis acid, Brønsted acid/base, hydrogen-bond donor), great improvement has been made in the enhancement of reactivity and stereoselectivity, and this strategy has emerged as a powerful instrument in organic synthesis to construct complex molecules. However, owing to the strong propensity of NHCs to bind to transition metals, the development of cooperative catalysis of NHCs and transition metals remains a longstanding and challenging work. At present, some important progress has been made in the combination of NHCs with palladium, copper and ruthenium, and the coordination of NHCs and transition metals can be controlled by the modulation of ligand and alkalinity in reaction system, which not only avoiding the deactivation of the catalysts, but also improving the reaction activity efficiently. This strategy has also been used in the asymmetric construction of bioactive molecular scaffolds. In this perspective, the achievements on NHC and transition metals cooperative catalysis will be discussed.
Lu Hong , Liu Jin-Yu , Li Hong-Yu , Xu Peng-Fei . Recent Developments in N-Heterocyclic Carbene and Transition-Metal Cooperative Catalysis[J]. Acta Chimica Sinica, 2018 , 76(11) : 831 -837 . DOI: 10.6023/A18060232
[1] (a) Shao, Z.; Du, Z. Chem. Soc. Rev. 2013, 42, 1337.
(b) Sun, Z.; He, J.; Qu, M.; Li, K. Chin. J. Org. Chem. 2015, 35, 1250. (孙哲, 何金梅, 屈孟男, 李侃社, 有机化学, 2015, 35, 1250).
[2] (a) Song, J.; Zhang, Z.-J.; Gong, L.-Z. Angew. Chem. Int. Ed. 2017, 19, 5212.
(b) Song, J.; Zhang, Z.-J.; Chen, S.-S.; Fan, T.; Gong, L.-Z. J. Am. Chem. Soc. 2018, 140, 3177.
(c) Zhu, S.; Xu, L.; Wang, L.; Xiao, J. Chin. J. Org. Chem. 2016, 36, 1229. (朱帅, 徐鲁斌, 王亮, 肖建, 有机化学, 2016, 36, 1229).
(d) Li, B.; Liu, R.; Liang, R.; Jia, Y. Acta Chim. Sinica 2017, 75, 448. (李保乐, 刘人荣, 梁仁校, 贾义霞, 化学学报, 2017, 75, 448).
[3] (a) Flanigan, D. M.; Romanov-Michailidis, F.; White, N. A.; Rovis, T. Chem. Rev. 2015, 115, 9307.
(b) Zhao, M.; Zhang, Y.-T.; Chen, J.; Zhou, L. Asian J. Org. Chem. 2018, 7, 54.
(c) Wang, A.; Xiao, Y.; Zhou, Y.; Xu, J.; Liu, H. Chin. J. Org. Chem. 2017, 37, 2590. (王翱, 肖永龙, 周宇, 徐进宜, 柳红, 有机化学, 2017, 37, 2590).
[4] (a) Cohen, D. T.; Scheidt, K. A. Chem. Sci. 2012, 3, 53.
(b) Wang, M. H.; Scheidt, K. A. Angew. Chem. Int. Ed. 2016, 55, 14912.
[5] Nemoto, T.; Fukuda, T.; Hamada, Y. Tetrahedron Lett. 2006, 47, 4365.
[6] (a) Lebeuf, R.; Hirano, K.; Glorius, F. Org. Lett. 2008, 10, 4243.
(b) He, J.; Tang, S.; Tang, S.; Liu, J.; Sun, Y.; Pan, X.; She, X. Tetrahedron Lett. 2009, 50, 430.
[7] Bai, Y.; Xiang, S.; Leow, M.; Liu, X.-W. Chem. Commun. 2014, 50, 6168.
[8] Bai, Y.; Leng, W. L.; Li, Y.; Liu, X.-W. Chem. Commun. 2014, 50, 13391.
[9] Liu, K.; Hovey, M. T.; Scheidt, K. A. Chem. Sci. 2014, 5, 4026.
[10] Guo, C.; Fleige, M.; Janssen-Müller, D.; Daniliuc, C. D.; Glorius, F. J. Am. Chem. Soc. 2016, 138, 7840.
[11] Guo, C.; Janssen-Müller, D.; Fleige, M.; Lerchen, A.; Daniliuc, C. D.; Glorius, F. J. Am. Chem. Soc. 2017, 139, 4443.
[12] Singha, S.; Patra, T.; Daniliuc, C. D.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 3551.
[13] Yasuda, S.; Ishii, T.; Takemoto, S.; Haruki, H.; Ohmiya, H. Angew. Chem. Int. Ed. 2018, 57, 2938.
[14] Namitharan, K.; Zhu, T.; Cheng, J.; Zheng, P.; Li, X.; Yang, S.; Song, B.-A.; Chi, Y. R. Nat. Commun. 2014, 5, 3982.
[15] Chen, J.; Yuan, P.; Wang, L.; Huang, Y. J. Am. Chem. Soc. 2017, 139, 7045.
[16] DiRocco, D. A.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 8094.
/
〈 |
|
〉 |