Article

Capillary Electrophoresis and Quantum Dot Electrochemiluminescence by Micellar Reversed Sweeping

  • Zhang Zhaoxiang ,
  • Liu Yujie ,
  • Wang Qi ,
  • Wang Jingjing
Expand
  • a Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE;Shandong Key Laboratory of Biochemical Analysis;Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong;College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, China;
    b Shandong Entry-Exit Inspection and Quarantine Bureau, Qingdao 266500, China

Received date: 2018-09-11

  Online published: 2018-11-26

Supported by

Project supported by the National Natural Science Foundation of China (No. 21105051).

Abstract

The strategy for electrochemiluminescence (ECL) sensor based on the CdSe quantum dots (QDs) to detect amines is proposed. We investigated the QDs ECL toward different amines, and found that amines could lead to the enhancement of ECL intensity. A novel amines detection platform based on micellar reversed sweeping, capillary electrophoresis (CE) separation, and quantum dots electrochemiluminescence detection was proposed for simultaneous detection of ractopamine and clenbuterol in meat samples. Firstly, the capillary was filled with running buffer containing SDS micelles. The electrophoretic velocity of SDS micelle was reverse to that of electroosmotic velocity. By controlling electroosmotic flow, the SDS-sample conjugates were at an immobile state in capillary. This immobile state was maintained for an extended period of time so that essentially unlimited volume of sample solution could be injected into the capillary. Then the sample was electrokinetically introduced into the separation capillary at 20 kV for 50 min. The negative charged SDS micelles in the buffer attracted the sample ions at the boundary of sample and buffer solution. The micellar reversed sweeping process allows introducing large amount of analytes into capillary to accumulate at the capillary inlet. After CE separation, the preconcentrated analytes sequentially enter into detection cell and lead to the enhancement of ECL intensity of QDs. The micellar reversed sweeping allows a large number of analytes trapped by SDS micelles, which could significantly amplify the QD's ECL signal for 6000-fold. The proposed method by micellar reversed sweeping and CE separation with QDs ECL detection realized the simultaneous and sensitive determination of ractopamine and clenbuterol in meat samples. The linear range were (0.8~2960) and (3.0~5520) μg/L and the limit of detection (LOD) were 96.8 and 192.5 ng/L for ractopamine and clenbuterol, respectively. CE based QDs ECL that combines the high separation efficiency of CE and the high sensitivity of QDs ECL has been proven to be a promising technique for amines compound assays.

Cite this article

Zhang Zhaoxiang , Liu Yujie , Wang Qi , Wang Jingjing . Capillary Electrophoresis and Quantum Dot Electrochemiluminescence by Micellar Reversed Sweeping[J]. Acta Chimica Sinica, 2019 , 77(2) : 179 -183 . DOI: 10.6023/A18090382

References

[1] Regueiro, J. A. G.; Pérez, B.; Casademont, G. J. Chromatogr. A 1993, 655, 73.
[2] Josefsson, M.; Sabanovic, A. J. Chromatogr. A 2006, 1120, 1.
[3] Wei, L.; Chengbian, Z.; Yulan, Z. J. Agric. Food Chem. 2007, 55, 6829.
[4] (a) Yao, X.; Yan, P.; Tang, Q.; Deng, A.; Li, J. Anal. Chim. Acta 2013, 798, 82.
(b) Chen, X.; Wu, R.; Sun, L.; Yao, Q.; Chen, X. J. Electroanal. Chem. 2016, 781, 310.
[5] (a) Zhang, Z. X.; Zhang, F.; Liu, Y. Acta Chim. Sinica 2012, 70, 2251(in Chinese). (张召香, 张飞, 刘营, 化学学报, 2012, 70, 2251.)
(b) Zhang, Z. X.; Luan, W. X.; Zhang, C. Y.; Liu, Y. J. Acta Chim. Sinica 2017, 75, 403(in Chinese). (张召香, 栾文秀, 张超英, 刘玉洁, 化学学报, 2017, 75, 403.)
(c) Zhang, Z. X.; Li, X. L.; Ge, A. Q.; Zhang, F.; Sun, X. M.; Li, X. M. Biosens. Bioelectron. 2013, 41, 452.
(d) Zhang, Z. X.; Zhang, C. Y.; Luan, W. X.; Li, X. F.; Liu, Y.; Luo, X. L. Anal. Chim. Acta 2015, 888, 27.
(e) Wang, Q.; Nie, Z.; Hu, Y.; Yao, S. Acta Chim. Sinica 2017, 75, 1109(in Chinese). (王琴, 聂舟, 胡宇芳, 姚守拙, 化学学报, 2017, 75, 1109.)
[6] (a) Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K. Science 2008, 320, 356.
(b) Hai, X.; Guo, Z.; Lin, X.; Chen, X.; Wang, J. ACS Appl. Mater. Interfaces 2018, 10, 5853.
(c) Bacon, M.; Bradley, S. J.; Nann, T. Part. Part. Syst. Char. 2014, 31, 415.
[7] (a) Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X. Chem. Commun. 2009, 5118.
(b) Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M. Nature Chem. 2010, 2, 1015.
(c) Lei, J.; Ju, H. Trends Anal. Chem. 2011, 30, 1351.
[8] Dong, Y.; Zhou, N.; Lin, X.; Lin, J.; Chi, Y.; Chen, G. Chem. Mater. 2010, 22, 5895.
[9] Ma, M. N.; Zhuo, Y.; Yuan, R.; Chai, Y. Q. Anal. Chem. 2015, 87, 11389.
[10] Jie, G.; Wang, L.; Yuan, J.; Zhang, S. Anal. Chem. 2011, 83, 3873.
[11] Zhang, M.; Liu, H.; Chen, L.; Yan, M.; Ge, L.; Ge, S.; Yu, J. Biosens. Bioelectron. 2013, 49, 79.
[12] Yang, S.; Jin, X.; Zheng, J.; Tao, L.; Li, Z.; Ke, Y.; Liu, J. Acta Chim. Sinica 2011, 69, 687(in Chinese). (杨淑平, 金鑫, 郑佳, 陶丽华, 李在均, 柯叶芳, 刘俊康, 化学学报, 2011, 69, 687.)
[13] Zhu, Q.; Xu, X.; Huang, Y.; Xu, L.; Chen, G. J. Chromatogr. A 2012, 1246, 35.
[14] Bahga, S. S.; Chambers, R. D.; Santiago, J. G. Anal. Chem. 2011, 83, 6154.
[15] Ibarra, I. S.; Rodriguez, J. A.; Miranda, J. M.; Vega, M.; Barrado, E. J. Chromatogr. A 2011, 1218, 2196.
[16] Zhang, Z. X.; He, Y. Z. J. Chromatogr. A 2005, 1066, 211.
[17] (a) Zhang, Z. X.; He, Y. Z.; Hu, Y. Y. J. Chromatogr. A 2006, 1109, 285.
(b) Zhang, Z. X.; Zhang, X. W.; Wang, J. J.; Zhang, S. S. Anal. Bioanal. Chem. 2008, 390, 1645.
[18] Zhang, X. W.; Zhang, Z. X. J. Pharmaceut. Biomed. 2011, 56, 330.
[19] Shin, I.; Kim, J.; Kwon, T.; Hong, J.; Lee, J.; Kim, H. J. Phys. Chem. C 2007, 111, 2280.
[20] Quirino, J. P.; Terabe, S. Anal. Chem. 1999, 71, 1638.

Outlines

/