Heterogeneous Reaction of NH3 and Cl2 on the Surface of γ-Al2O3 Particles
Received date: 2018-09-25
Online published: 2018-12-05
Supported by
Project supported by the National Natural Science Foundation of China (Nos. U1832212, 11405184, 11575210, 91643206) and the Key Deployment Projects of Chinese Academy of Sciences (No. ZDRW-CN-2018-1).
The effect of NH3 concentration, reaction time and other conditions on the heterogeneous reaction of NH3 and Cl2 on the surface of γ-Al2O3 particles was investigated at the room temperature, pressure and in the presence of oxygen by ion chromatography (IC). The formation of the surface species (Cl-, NO3-, and SO42-) via both individual reaction and co-existing reaction of NH3, Cl2, SO2 and NO2 on the surface of γ-Al2O3 was investigated as well. The results revealed that NH3 (400 ppm) and Cl2 (400 ppm) had synergistic effect on the surface γ-Al2O3, and the total yield of Cl- was 589.65 μg after reaction of 2 h. The formation of the surface chlorides increased firstly and then decreased with the increase of ammonia concentration, and the maximum yield of Cl- was reached at 400 ppm of NH3. In the presence of active chlorine, NH3 significantly promoted the generation of the adsorptive species on the surface, such as Cl-, NO3- and SO42-, and the most obvious synergistic effect was induced to form on the conditions of four gases co-existence. The heterogeneous reaction mechanism of NH3 with Cl2 and the influence on the atmospheric environment were also discussed as well. Additionally, the mixing ratios used in the study are extremely high compared with ambient levels, which could be as a simulation to explore whether the synergistic effect obtained in this paper are also present in the real ambient conditions. We have studied a relatively low mixing ratios for heterogeneous reaction experiments, but the content of nitrate and chloride on the surface of γ-Al2O3 were lower than the limit of detection of ion chromatography. Therefore, other researches such as Knudsen cell and smog chamber study, field monitoring, and mode study are also worth for exploring in future study. The results of this study could provide reference data for the study of the contribution of active chlorine and ammonia to the formation of secondary inorganic particles.
Key words: heterogeneous reaction; secondary inorganic particles; NH3; Cl2
Tang Siqun , Ma Lingling , Luo Min , Zhang Zhaohui , Qiu Ye , Feng Shuo , Xia Chuanqin , Jin Yongdong , Xu Diandou . Heterogeneous Reaction of NH3 and Cl2 on the Surface of γ-Al2O3 Particles[J]. Acta Chimica Sinica, 2019 , 77(2) : 160 -165 . DOI: 10.6023/A18090401
[1] Kang, W.-B.; Xia, Y.; Wang, J.; Wang, W. Acta Chim. Sinica 2016, 74, 694. (康文斌, 夏耘, 王骏, 王炜, 化学学报, 2016, 74, 694.)
[2] Zhu, T.; Sang, J.; Zhao, D.-F. Sci. Sinica Chim. 2010, 40, 1731. (朱彤, 尚静, 赵德峰, 中国科学:化学, 2010, 40, 1731.)
[3] Hu, M.; Shang, D.-J.; Guo, S.; Wu, Z.-J. Acta Chim. Sinica 2016, 74, 385. (胡敏, 尚冬杰, 郭松, 吴志军, 化学学报, 2016, 74, 385.)
[4] Zhang, R.; Wang, G.; Guo, S.; Zamora, M.-L.; Ying, Q.; Lin, Y.; Wang, W.; Hu, M.; Wang, Y. Chem. Rev. 2015, 115, 3803.
[5] Behera, S. N.; Sharma, M. Atmos. Environ. 2011, 45, 4015.
[6] Yu, X.-C.; He, K.-B.; Ma, Y.-L.; Duan, F.-K.; Yang, F.-R. China Environ. Sci. 2004, 24, 53. (余学春, 贺克斌, 马永亮, 段风魁, 杨复沫, 中国环境科学, 2004, 24, 53.)
[7] Xu, W.-B.; Xu, Y.-L.; Tang, X.-L.; Lei, Y.; Wang, J.-N. China Environ. Sci. 2016, 36, 3531. (薛文博, 许艳玲, 唐晓龙, 雷宇, 王金南, 中国环境科学, 2016, 36, 3531.)
[8] Zhao, D.-F.; Song, X.-J.; Zhu, T.; Zhang, Z.-F.; Liu, Y.-J.; Shang, J. Atmos. Chem. Phys. 2018, 18, 2481.
[9] Wu, L.-Y.; Tong, S.-R.; Wang, W.-G.; Ge, M.-F. Atmos. Chem. Phys. 2011, 11, 6593.
[10] Clegg, S. M.; Abbatt, J. P. D. Atmos. Chem. Phys. 2001, 1, 73.
[11] Huang, L. B.; Zhao, Y.; Li, H.; Chen, Z. M. Environ. Sci. Technol. 2015, 49, 10797.
[12] Xie, S. D.; Yu, T.; Zhang, Y. H.; Zeng, L. M.; Qi, L.; Tang, X. Y. Sci. Total Environ. 2005, 345, 153.
[13] Bedjanian, Y.; Poulet, G. Chem. Rev. 2003, 103, 4639.
[14] Ge, M.-F.; Ma, C.-P. Prog. Chem. 2009, 21, 307. (葛茂发, 马春平, 化学进展, 2009, 21, 307.)
[15] Agarwal, H.; Stenger, H. G.; Wu, S.; Fan, Z. Energ. Fuel 2006, 20, 1068.
[16] Ariya, P. A.; Khalizov, A.; Gidas, A. J. Phy. Chem. A 2002, 106, 7310.
[17] Faxon, C.; Bean, J.; Ruiz, L. Atmosphere 2015, 6, 1487.
[18] Liao, J.; Huey, L. G.; Liu, Z.; Tanner, D. J.; Cantrell, C. A.; Orlando, J. J.; Flocke, F. M.; Shepson, P. B.; Weinheimer, A. J.; Hall, S. R.; Ullmann, K.; Beine, H. J.; Wang, Y. H.; Ingall, E. D.; Stephens, C. R.; Hornbrook, R. S.; Apel, E. C.; Riemer, D.; Fried, A.; Mauldin, R. L.; Smith, J. N.; Staebler, R. M.; Neuman, J. A.; Nowak, J. B. Nat. Geosci. 2014, 7, 91.
[19] Liu, X. X; Qu, H.; Huey, G.; Wang, Y. H.; Sjostedt, S.; Zeng, L.; Lu, K. D.; Wu, Y. S.; Hu, M.; Zhu, T.; Zhang, Y. H. Environ. Sci. Technol. 2017, 51, 9588.
[20] Tang, S. Q.; Ma, L. L.; Luo, M.; Zhang, Z. H.; Cao, X. Z.; Huang, Z. L.; Xia, R.; Qiu, Y.; Feng, S.; Zhang, P.; Xia, C. Q.; Jin, Y. D.; Xu, D. D. Atmos. Environ. 2018, 188, 25.
[21] Gard, E. E.; Kleeman, M. J.; Gross, D. S.; Hughes, L. S.; Allen, J. O.; Morrical, B. D.; Fergenson, D. P.; Dienes, T.; Galli, M. E.; Johnson, R. J.; Cass, G. R.; Prather, K. A. Science 1998, 279, 1184.
[22] Chen, H. H.; Navea, J. G.; Young, M. A.; Grassian, V. H. J. Phys. Chem. A 2011, 115, 490.
[23] He, H.; Wang, Y. S.; Ma, Q. X.; Ma, J. Z.; Chu, B. W.; Ji, D. S.; Tang, G. Q.; Liu, C.; Zhang, H. X.; Hao, J. M. Sci. Rep. 2014, 4, 4172.
[24] Xue, W.-B.; Fu, F.; Wang, J.-N.; Tang, G.-Q.; Lei, Y.; Yang, J.-T.; Wang, Y.-S. China Environ. Sci. 2014, 34, 1361. (薛文博, 付飞, 王金南, 唐贵谦, 雷宇, 杨金田, 王跃思, 中国环境科学, 2014, 34, 1361.)
[25] Wang, L.-H.; Zeng, F.-G.; Xiang, W.-L.; Wang, Z.-F.; Yang, W.-Y. China Environ. Sci. 2015, 35, 2546. (王凌慧, 曾凡刚, 向伟玲, 王自发, 杨文夷, 中国环境科学, 2015, 35, 2546.)
[26] Liu, J.; An, X. Q.; Zhu, T.; Zhai, S.-X.; Li, N. China Environ. Sci. 2014, 34, 2726. (刘俊, 安兴琴, 朱彤, 翟世贤, 李楠. 中国环境科学, 2014, 34, 2726.)
[27] Zhang, L.; Chen, Y. F.; Zhao, Y. H.; Henze, D. K.; Zhu, L. Y.; Song, Y.; Paulot, F.; Liu, X. J.; Pan, Y. P.; Lin, Y.; Huang, B. X. Atmos. Chem. Phys. 2018, 18, 339.
[28] Liu, L.; Zhang, X. Y.; Xu, W.; Liu, X. J.; Li, Y.; Lu, X. H.; Zhang, Y. H.; Zhang, W. T. Atmos. Chem. Phys. 2017, 17, 9365.
[29] Pepi, F.; Ricci, A.; Rosi, M. J. Phys. Chem. 2003, 107, 2085.
[30] Veirs, D. K.; Berg, J. M.; Worl, L. A.; Narlesky, J. E; Dunn, K. A.; Louthan, J. M. R. J. Nucl. Mat. Manag. 2010, 38, 25.
[31] Réti, F.; Josepovits, V.; Perczel, I. Appl. Surf. Sci. 1993, 65, 271.
[32] Sisler, H. H.; Neth, F. T.; Drago, R. S.; Yaney, D. J. Am. Chem. Soc. 1954, 76, 3906.
[33] Oldfield, J. W.; Todd, B. Brit. Corros. J. 1991, 26, 173.
[34] Goodman, A. L.; Miller, T. M.; Grassian, V. H. J. V. Sci. Technol. A 1998, 16, 2585.
[35] Miller, T. M.; Grassian, V. H. Geophy. Res. Lett. 1998, 25, 3835.
[36] Mitchell, M. B.; Sheinker, V. N. J. Phys. Chem. 1996, 100, 7550.
[37] Waqif, M.; Saad, A. M.; Bensitel, M.; Bachelier, J.; Saur, O.; Lavalley, J. C. J. Chem. Soc. Faraday. Trans. 1992, 88, 2931.
[38] Ma, Q.; Liu, Y.; He, H. J. Phy. Chem. A 2008, 112, 6630.
[39] Rossi, M. J. Chem. Rev. 2003, 103, 4823.
[40] Schweitzer, F.; Mirabel, P.; George, C. J. Phys. Chem. A 1998, 102, 3942.
[41] Keene, W. C.; Sander, R.; Pszenny, A. A. P.; Vogt, R.; Crutzen, P. J.; Galloway, J. N. J. Aerosol Sci. 1998, 29, 339.
[42] Huang, Z. L.; Zhang, Z. H.; Kong, W. H.; Feng, S.; Qiu, Y.; Tang, S. Q.; Xia, C. Q.; Ma, L. L.; Luo, M.; Xu, D. D. Atmos. Environ. 2017, 166, 403.
/
〈 |
|
〉 |