Recent Advances in Hydrothermal Synthesis of Low Dimensional Boron Nitride Nanostructures
Received date: 2018-11-07
Online published: 2018-12-14
Supported by
Project supported by the National Key R&D Project from Ministry of Science and Technology of China (No. 2017YFB0406200) and R&D Funds for basic Research Program of Shenzhen (No. JCYJ20150831154213681).
As an ultra-wide bandgap insulating material, boron nitride has attracted intense interest due to its high thermal conductivity, high chemical and thermal stability as well as their applications in thermal interface materials, photo/electro-catalysis, and energy storage. As for the low dimensional boron nitride nanostructures, e.g., nanosheets, nanotubes, nanorods, nanowires, nanospheres, and quantum dots, the high thermal conductivity (600 W/mK) and the ultra-large bandgap (5~6 eV) make them the promising candidate for thermal conductive composites, thermoelectric materials and electronic packaging materials, which gives rise to the hot research topic on the synthesis and properties of the boron nitride nanostructures. In this review, the recent advances in the hydrothermal synthesis of boron nitride nanostructures will be fully discussed, and the remarks on the issues need to be addressed, the comprehensive understanding of the mechanism and the new approaches for the hydrothermal synthesis will be proposed in the end.
Wang Haixu , Yang Guang , Cheng Tianshu , Wang Ning , Sun Rong , Wong Ching-Ping . Recent Advances in Hydrothermal Synthesis of Low Dimensional Boron Nitride Nanostructures[J]. Acta Chimica Sinica, 2019 , 77(4) : 316 -322 . DOI: 10.6023/A18110456
[1] Zeng, X.; Sun, J.; Yao, Y.; Sun, R.; Xu, J. B.; Wong, C. P. ACS Nano 2017, 11, 5167.
[2] Zhan, Y.; Yan, J.; Wu, M.; Guo, L.; Lin, Z.; Qiu, B.; Chen, G.; Wong, K. Y. Talanta 2017, 174, 365.
[3] Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F.; Johnston-Halperin, E.; Kuno, M.; Plashnitsa, V. V.; Robinson, R. D.; Ruoff, R. S.; Salahuddin, S.; Shan, J.; Shi, L.; Spencer, M. G.; Terrones, M.; Windl, W.; Goldberger, J. E. ACS Nano 2013, 7, 2898.
[4] Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Chem. Rev. 2013, 113, 3766.
[5] Tan, X. Y.; Yang, S. Y.; Li, H. J. Acta Chim. Sinica 2017, 75, 271. (谭晓宇, 杨少延, 李辉杰, 化学学报, 2017, 75, 271.)
[6] Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. Rev. B 1994, 49, 5081.
[7] Li, L.; Jia, G. X.; Wang, X. X.; Wu, T. W.; Song, X. W.; An, S. L. Acta Chim. Sinica 2017, 75, 284. (李磊, 贾桂霄, 王晓霞, 吴铜伟, 宋希文, 安胜利, 化学学报, 2017, 75, 284.)
[8] Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Science 1995, 269, 966.
[9] Loiseau, A.; Willaime, F.; Demoncy, N.; Hug, G.; Pascard, H. Phys. Rev. Lett. 1996, 76, 4737.
[10] Nag, A.; Raidongia, K.; Hembram, K. P. S. S.; Datta, R.; Waghmare, U. V.; Rao, C. N. R. ACS Nano 2010, 4, 1539.
[11] Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H.-Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Science 2011, 331, 568.
[12] Lin, Y.; Connell, J. W. Nanoscale 2012, 4, 6908.
[13] Pakdel, A.; Bando, Y.; Golberg, D. Chem. Soc. Rev. 2014, 43, 934.
[14] E, S. F.; Long, X. Y.; Li, C. W.; Geng, R. J.; Han, D. B.; Lu, W. B.; Yao, Y. G. Chem. Phys. Lett. 2017, 687, 307.
[15] Zhang, Z. H.; Zhao, X. F.; Sun, H. B. J. Ceramics 2018, 39, 244. (张振昊, 赵晓帆, 孙海滨, 陶瓷学报, 2018, 39, 244.)
[16] Pakdel, A.; Bando, Y.; Golberg, D. Chem. Soc. Rev. 2014, 43, 934.
[17] Yuan, S. D.; Xiong, K.; Hu, K. P.; Zhang, Y. H.; Luo, Y.; Jiang, G. D. J. Mater. Eng. 2013, 10, 53. (袁颂东, 熊坤, 胡昆鹏, 张运华, 罗意, 江国栋, 材料工程, 2013, 10, 53.)
[18] Ding, J. H.; Zhao, H. R.; Yu, H. B. 2D Mater. 2018, 5, 045015.
[19] Zheng, Z. Y.; Cox, M.; Li, B. J. Mater. Sci. 2017, 53, 66.
[20] Du, Z. H.; Zeng, X. M.; Zhu, M. M.; Kanta, A.; Liu, Q.; Li, J. Z.; Kong, L. B. Ceram. Int. 2018, 44, 21461.
[21] Wang, N.; Yang, G.; Wang, H.; Yan, C.; Sun, R.; Wong, C.-P. Mater. Today 2018, DOI:10.1016/j.mattod.2018.10.039.
[22] Li, X.; Hao, X.; Zhao, M.; Wu, Y.; Yang, J.; Tian, Y.; Qian, G. Adv. Mater. 2013, 25, 2200.
[23] Alem, N.; Erni, R.; Kisielowski, C.; Rossell, M. D.; Gannett, W.; Zettl, A. Phys. Rev. B 2009, 80, 155425.
[24] Yi, M.; Shen, Z. G.; Zhu, J. Y. Chin. Sci. Bull. 2014, 59, 1794.
[25] Du, M.; Li, X. L.; Wang, A. Z.; Wu, Y. Z.; Hao, X. P.; Zhao, M. W. Angew. Chem., Int. Ed. 2014, 53, 3645.
[26] Zheng, Z. Y.; Cox, M.; Li, B. J. Mater. Sci. 2017, 53, 66.
[27] Liu, C.; Zhang, L.; Li, P.; Chen, Y. A.; Cui, W. W.; Zhang, H. L. J. Mater. Eng. 2016, 44, 122. (刘闯, 张力, 李平, 陈永安, 崔雯雯, 张海林, 材料工程, 2016, 44, 122.)
[28] Hemmi, A.; Bernard, C.; Cun, H.; Roth, S.; Klockner, M.; Kalin, T.; Weinl, M.; Gsell, S.; Schreck, M.; Osterwalder, J.; Greber, T. Rev. Sci. Instrum. 2014, 85, 035101.
[29] Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I.; Ajayan, P. M. Nano Lett. 2010, 10, 3209.
[30] Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. Min.; Shi, Y. M.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T.; Kong, J. Nano Lett. 2011, 12, 161.
[31] He, L. F.; Shirahata, J.; Suematsu, H.; Nakayama, T.; Suzuki, T.; Jiang, W.; Niihara, K. Mater. Lett. 2014, 117, 120.
[32] Kumar, V.; Nikhil, K.; Roy, P.; Lahiri, D.; Lahiri, I. RSC Adv. 2016, 6, 48025.
[33] Liang, D.; Ai, T.; Zhang, H. R.; Yan, X.; Zhou, Y. S. J. Solid Rocket Technol. 2018, 41, 642. (梁丹, 艾涛, 张浩然, 阎鑫, 周友升, 固体火箭技术, 2018, 41, 642.)
[34] Tian, L.; Li, J.; Liang, F.; Chang, S.; Zhang, H.; Zhang, M.; Zhang, S. J. Colloid Interface Sci. 2019, 536, 664.
[35] Yang, G.; Wang, N.; Wang, H. X.; Song, R. In 2018 IEEE 68th Electronic Components, Technology Conference, San Diego, California USA, 2018, pp. 1421~1426.
[36] Lee, R. S.; Gavillet, J.; Lamy de la Chapelle, M.; Loiseau, A.; Cochon, J. L.; Pigache, D.; Thibault, J.; Willaime, F. Phys. Rev. B 2001, 64, 121405.
[37] Li, L. H.; Chen, Y.; Glushenkov, A. M. Nanotechnology 2010, 21, 105601.
[38] Kim, M. J.; Chatterjee, S.; Kim, S. M.; Stach, E. A.; Bradley, M. G.; Pender, M. J.; Sneddon, L. G.; Maruyama, B. Nano Lett. 2008, 8, 3298.
[39] Zhang, X.; Lian, G.; Si, H. B.; Wang, J.; Cui, D. L.; Wang, Q. L. J. Mater. Chem. A 2013, 1, 11992.
[40] Xue, Q.; Zhang, H. J.; Zhu, M. S.; Wang, Z. F.; Pei, Z. X.; Huang, Y.; Huang, Y.; Song, X. F.; Zeng, H. B.; Zhi, C. Y. RSC Adv. 2016, 6, 79090.
[41] Lin, L. X.; Xu, Y. X.; Zhang, S. W.; Ross, I. M.; Ong, A. C. M.; Allwood, D. A. Small 2014, 10, 60.
[42] Fan, L.; Zhou, Y. M.; He, M.; Tong, Y.; Zhong, X.; Fang, J. S.; Bu, X. H. J. Mater. Sci. 2017, 52, 13522.
[43] Peng, D.; Zhang, L.; Li, F. F.; Cui, W. R.; Liang, R. P.; Qiu, J. D. ACS Appl. Mater. Interfaces 2018, 10, 7315.
[44] Xing, H.; Zhai, Q.; Zhang, X.; Li, J.; Wang, E. Anal. Chem. 2018, 90, 2141.
[45] Lei, Z.; Xu, S.; Wan, J.; Wu, P. Nanoscale 2015, 7, 18902.
[46] Li, H.; Tay, R. Y.; Tsang, S. H.; Zhen, X.; Teo, E. H. Small 2015, 11, 6491.
[47] Angizi, S.; Hatamie, A.; Ghanbari, H.; Simchi, A. ACS Appl. Mater. Interfaces 2018, 10, 28819.
[48] Yao, Q. H.; Feng, Y. F.; Rong, M. C.; He, S. G.; Chen, X. Microchim. Acta 2017, 184, 4217.
[49] Huo, B.; Liu, B.; Chen, T.; Cui, L.; Xu, G.; Liu, M.; Liu, J. Langmuir 2017, 33, 10673.
/
〈 |
|
〉 |