Review

Research Progress of High-throughput Computational Screening of Metal-Organic Frameworks

  • Liu Zhilu ,
  • Li Wei ,
  • Liu Hao ,
  • Zhuang Xudong ,
  • Li Song
Expand
  • a China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074;
    b State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074

Received date: 2018-12-12

  Online published: 2019-01-09

Supported by

Project supported by the National Natural Science Foundation of China (No. 51606081) and Double first-class research funding of China-EU Institute for Clean and Renewable Energy (No. ICARE-RP-2018-HYDRO-001).

Abstract

During the past decades, extensive investigations on metal-organic frameworks (MOFs) with ultrahigh surface area for gas adsorption and separation have been reported. With the increasing number of possible MOFs, it has been a great challenge to discover high-performing MOFs of interest from numerous structures. High-throughput computational screening (HTCS) is a powerful tool to accelerate the development of MOFs for application of interest and explores the quantitative structure-property relationship (QSPR) to facilitate the rational design of top-performing MOFs. In this review, we summarize the MOF databases used for HTCS, mainly including MOFs collected from experimentally synthesized MOFs (i.e. eMOFs), and the hypothetical MOFs constructed by computer-aided tools (i.e. hMOFs). Moreover, there are currently two important screening strategies, molecular simulation and machine learning-based HTCS. A vast majority of HTCS have been performed by molecular simulations including grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations, in which the accuracy of force field parameters play a criticl role in the reliability of HTCS. GCMC is able to predict the adsorption performance of MOFs such as adsorption capacity, selectivity and heat of adsorption, whereas MD is commonly used to estimate the dynamic property of adsorbates, e.g. diffusion coefficient and permeability. Additionally, lattice GCMC and classical density functional theory (cDFT) are also highlighted for computational screening of MOFs in this review. Machine learning consisting of various algorithms is a recently developed strategy with high efficiency and low computational cost, which is a more powerful and promising technique in future. At last, the investigations on the utilization of HTCS in CH4 storage, H2 storage, CO2 capture and gas separation were outlined. By reviewing the recent research progress in HTCS, we pointed out the current challenges and opportunities for the furture development of HTCS for MOFs, which will be the major engine for the commercialization of MOFs in various applications of interests.

Cite this article

Liu Zhilu , Li Wei , Liu Hao , Zhuang Xudong , Li Song . Research Progress of High-throughput Computational Screening of Metal-Organic Frameworks[J]. Acta Chimica Sinica, 2019 , 77(4) : 323 -339 . DOI: 10.6023/A18120497

References

[1] Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276.
[2] O'Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. Acc. Chem. Res. 2008, 41, 1782.
[3] Férey, G. Chem. Soc. Rev. 2008, 37, 191.
[4] Horike, S.; Shimomura, S.; Kitagawa, S. Nat. Chem. 2009, 1, 695.
[5] Murray, L. J.; Dinca, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294.
[6] Sculley, J.; Yuan, D.; Zhou, H. C. Energy Environ. Sci. 2011, 4, 2721.
[7] Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev. 2009, 38, 1477.
[8] Verma, S.; Mishra, A. K.; Kumar, J. Acc. Chem. Res. 2010, 43, 79.
[9] Li, J. R.; Sculley, J.; Zhou, H. C. Chem. Rev. 2012, 112, 869.
[10] Bae, Y. S.; Snurr, R. Q. Angew. Chem. 2011, 50, 11586.
[11] Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. Chem. Soc. Rev. 2009, 38, 1330.
[12] Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105.
[13] Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Angew. Chem. 2006, 118, 6120.
[14] Rocca, J. D.; Liu, D. M.; Lin, W. B. Acc. Chem. Res. 2011, 44, 957.
[15] Bernini, M. C.; Fairen-Jimenez, D.; Pasinetti, M.; Ramirez-Pastor, A. J.; Snurr, R. Q. J. Mater. Chem. B 2014, 2, 766.
[16] Kent, C. A.; Mehl, B. P.; Ma, L.; Papanikolas, J. M.; Meyer, T. J.; Lin, W. B. J. Am. Chem. Soc. 2010, 132, 12767.
[17] Kent, C. A.; Liu, D.; Ma, L.; Papanikolas, J. M.; Meyer, T. J.; Lin, W. B. J. Am. Chem. Soc. 2011, 133, 12940.
[18] Lee, C. Y.; Farha, O. K.; Hong, B. J.; Sarjeant, A. A.; Nguyen, S. T.; Hupp, J. T. J. Am. Chem. Soc. 2011, 133, 15858.
[19] Farrusseng, D.; Aguado, S.; Pinel, C. Angew. Chem. 2009, 48, 7502.
[20] Ma, L.; Abney, C.; Lin, W. B. Chem. Soc. Rev. 2009, 38, 1248.
[21] Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450.
[22] Farha, O. K.; Shultz, A. M.; Sarjeant, A. A.; Nguyen, S. T.; Hupp, J. T. J. Am. Chem. Soc. 2011, 133, 5652.
[23] Colón, Y. J.; Fairen-Jimenez, D.; Wilmer, C. E.; Snurr, R. Q. J. Phys. Chem. C 2014, 118, 5383.
[24] de Pablo, J. J.; Jones, B.; Kovacs, C. L.; Ozolins, V.; Ramirez, A. P. Curr. Opin. Solid State Mater. Sci. 2014, 18, 99.
[25] Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. APL Mater. 2013, 1, 011002.
[26] Gomez-Gualdron, D. A.; Gutov, O. V.; Krungleviciute, V.; Borah, B.; Mondloch, J. E.; Hupp, J. T.; Yildirim, T.; Farha, O. K.; Snurr, R. Q. Chem. Mater. 2014, 26, 5632.
[27] Chung, Y. G.; Camp, J.; Haranczyk, M.; Sikora, B. J.; Bury, W.; Krungleviciute, V.; Yildirim, T.; Farha, O. K.; Sholl, D. S.; Snurr, R. Q. Chem. Mater. 2014, 26, 6185.
[28] Fu, J.; Tian, Y.; Wu, J. Z. AIChE J. 2015, 61, 3012.
[29] Bobbitt, N. S.; Chen, J.; Snurr, R. Q. J. Phys. Chem. C 2016, 120, 27328.
[30] Fu, J.; Liu, Y.; Tian, Y.; Wu, J. Z. J. Phys. Chem. C 2015, 119, 5374.
[31] Daff, T. D.; Woo, T. K. MRS Online Proc. Libr. 2014, 1523.
[32] Li, S.; Chung, Y. G.; Simon, C. M.; Snurr, R. Q. J. Phys. Chem. Lett. 2017, 8, 6135.
[33] Wu, D.; Wang, C. C.; Liu, B.; Liu, D. H.; Yang, Q. Y.; Zhong, C. L. AIChE J. 2012, 58, 2078.
[34] Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Nat. Chem. 2011, 4, 83.
[35] Sumer, Z.; Keskin, S. Chem. Eng. Sci. 2017, 164, 108.
[36] Yang, W. Y.; Liang, H.; Qiao, Z. W. Acta Chim. Sinica 2018, 76, 785. (杨文远, 梁红, 乔智威, 化学学报, 2018, 76, 785.)
[37] Jiang, J. W. Curr. Opin. Chem. Eng. 2012, 1, 138.
[38] Moghadam, P. Z.; Li, A.; Wiggin, S. B.; Tao, A.; Maloney, A. G. P.; Wood, P. A.; Ward, S. C.; Fairen-Jimenez, D. Chem. Mater. 2017, 29, 2618.
[39] Watanabe, T.; Sholl, D. S. Langmuir 2012, 28, 14114.
[40] Allen, F. H. Acta Crystallogr. Sect. B:Struct. Sci. 2002, 58, 380.
[41] Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M. Microporous Mesoporous Mater. 2012, 149, 134.
[42] Hoshen, J.; Kopelman, R. Phys. Rev. B 1976, 14, 3438.
[43] Goldsmith, J.; Wong-Foy, A. G.; Cafarella, M. J.; Siegel, D. J. Chem. Mater. 2013, 25, 3373.
[44] Li, Z. J.; Xiao, G.; Yang, Q. Y.; Xiao, Y. L.; Zhong, C. L. Chem. Eng. Sci. 2014, 120, 59.
[45] The Computation-Ready, Experimental (CoRE) Metal-Organic Frameworks Database, http://gregchung.github.io/CoRE-MOFs/.
[46] Lin, L. C.; Berger, A. H.; Martin, R. L.; Kim, J.; Swisher, J. A.; Jariwala, K.; Rycroft, C. H.; Bhown, A. S.; Deem, M. W.; Haranczyk, M.; Smit, B. Nat. Mater. 2012, 11, 633.
[47] Fernandez, M.; Boyd, P. G.; Daff, T. D.; Aghaji, M. Z.; Woo, T. K. J. Phys. Chem. Lett. 2014, 5, 3056.
[48] McDaniel, J. G.; Li, S.; Tylianakis, E.; Snurr, R. Q.; Schmidt, J. R. J. Phys. Chem. C 2015, 119, 3143.
[49] Gómez-Gualdrón, D. A.; Colón, Y. J.; Zhang, X.; Wang, T. C.; Chen, Y.-S.; Hupp, J. T.; Yildirim, T.; Farha, O. K.; Zhang, J.; Snurr, R. Q. Energy Environ. Sci. 2016, 9, 3279.
[50] Qiao, Z. W.; Xu, Q. S.; Cheetham, A. K.; Jiang, J. W. J. Phys. Chem. C 2017, 121, 22208.
[51] Qiao, Z. W.; Xu, Q. S.; Jiang, J. W. J. Mater. Chem. A 2018, 6, 18898.
[52] Baburin, I. A.; Leoni, S. CrystEngComm 2010, 12, 2809.
[53] Hayashi, H.; Côté, A. P.; Furukawa, H.; O'Keeffe, M.; Yaghi, O. M. Nat. Mater. 2007, 6, 501.
[54] Lewis, D. W.; Ruiz-Salvador, A. R.; Gómez, A.; Rodriguez-Albelo, L. M.; Coudert, F.-X.; Slater, B.; Cheetham, A. K.; Mellot-Draznieks, C. CrystEngComm 2009, 11, 2272.
[55] Colon, Y. J.; Snurr, R. Q. Chem. Soc. Rev. 2014, 43, 5735.
[56] Kong, X. Q.; Deng, H. X.; Yan, F. Y.; Kim, J.; Swisher, J. A.; Smit, B.; Yaghi, O. M.; Reimer, J. A. Science 2013, 341, 882.
[57] Tong, M.; Lan, Y. S.; Yang, Q. Y.; Zhong, C. L. Green Energy Environ. 2018, 3, 107.
[58] Deem, M. W.; Pophale, R.; Cheeseman, P. A.; Earl, D. J. J. Phys. Chem. C 2009, 113, 21353.
[59] Pophale, R.; Cheeseman, P. A.; Deem, M. W. Phys. Chem. Chem. Phys. 2011, 13, 12407.
[60] Bouëssel du Bourg, L.; Ortiz, A. U.; Boutin, A.; Coudert, F.-X. APL Mater. 2014, 2, 124110.
[61] Edgar, M.; Mitchell, R.; Slawin, A. M. Z.; Lightfoot, P.; Wright, P. A. Chem. Eur. J. 2001, 7, 5168.
[62] Tian, C. B.; Chen, R. P.; He, C.; Li, W. J.; Wei, Q.; Zhang, X. D.; Du, S. W. Chem. Commun. (Camb.) 2014, 50, 1915.
[63] Sikora, B. J.; Wilmer, C. E.; Greenfield, M. L.; Snurr, R. Q. Chem. Sci. 2012, 3, 2217.
[64] Erucar, I.; Keskin, S. Front. Mater. 2018, 5, 4.
[65] Sarkisov, L.; Harrison, A. Mol. Simul. 2011, 37, 1248.
[66] First, E. L.; Gounaris, C. E.; Wei, J.; Floudas, C. A. Phys. Chem. Chem. Phys. 2011, 13, 17339.
[67] Alexandrov, E. V.; Blatov, V. A.; Kochetkov, A. V.; Proserpio, D. M. CrystEngComm 2011, 13, 3947.
[68] Becker, T. M.; Heinen, J.; Dubbeldam, D.; Lin, L. C.; Vugt, T. J. H. J. Phys. Chem. C 2017, 121, 4659.
[69] McDaniel, J. G.; Schmidt, J. R. J. Phys. Chem. C 2012, 116, 14031.
[70] Mercado, R.; Vlaisayljevich, B.; Lin, L. C.; Lee, K.; Lee, Y.; Mason, J. A.; Xiao, D. J.; Gonzalez, M. I.; Kapelewski, M. T.; Neaton, J. B.; Smit, B. J. Phys. Chem. C 2016, 120, 12590.
[71] Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard Ⅲ, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114.25, 10024.
[72] Mayo, S. L.; Olafson, B. D.; Goddard, W. A. J. Phys. Chem. 1990, 94, 8897.
[73] Grajciar, L.; Nachtigall, P.; Bludský, O.; Rubeš, M. J. Chem. Theory Comput. 2014, 11, 230.
[74] Rappe, A. K.; Goddard Ⅲ, W. A. J. Phys. Chem. 1991, 95, 3358.
[75] Wilmer, C. E.; Kim, K. C.; Snurr, R. Q. J. Phys. Chem. Lett. 2012, 3, 2506.
[76] Xu, Q.; Zhong, C. L. J. Phys. Chem. C 2010, 114, 5035.
[77] Kadantsev, E. S.; Boyd, P. G.; Daff, T. D.; Woo, T. K. J. Phys. Chem. Lett. 2013, 4, 3056.
[78] Li, S.; Chung, Y. G.; Snurr, R. Q. Langmuir 2016, 32, 10368.
[79] Li, W.; Rao, Z. Z.; Chung, Y. G.; Li, S. ChemistrySelect 2017, 2, 9458.
[80] Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15.
[81] Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.
[82] Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
[83] Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.
[84] Campaná, C.; Mussard, B.; Woo, T. K. J. Chem. Theory Comput. 2009, 5, 2866.
[85] Manz, T. A.; Sholl, D. S. J. Chem. Theory Comput. 2012, 8, 2844.
[86] Nazarian, D.; Camp, J. S.; Chung, Y. G.; Snurr, R. Q.; Sholl, D. S. Chem. Mater. 2016, 29, 2521.
[87] Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B.; Mayer, M. G. Molecular Theory of Gases and Liquids, Wiley, New York, 1954.
[88] Talu, O.; Myers, A. L. Colloids Surf. A 2001, 187, 83.
[89] Yang, Q. Y.; Zhong, C. L. J. Phys. Chem. B 2005, 109, 11862.
[90] Wilmer, C. E.; Farha, O. K.; Bae, Y. S.; Hupp, J. T.; Snurr, R. Q. Energy Environ. Sci. 2012, 5, 9849.
[91] Fernandez, M.; Woo, T. K.; Wilmer, C. E.; Snurr, R. Q. J. Phys. Chem. C 2013, 117, 7681.
[92] Michels, A.; De Graaff, W.; Ten Seldam, C. A. Physica 1960, 26, 393.
[93] Lamari, F. D.; Levesque, D. J. Chem. Phys. 1998, 109, 4981.
[94] Gomez, D. A.; Toda, J.; Sastre, G. Phys. Chem. Chem. Phys. 2014, 16, 19001.
[95] Zhang, H. D.; Deria, P.; Farha, O. K.; Hupp, J. T.; Snurr, R. Q. Energy Environ. Sci. 2015, 8, 1501.
[96] Liu, Y.; Guo, F. Y.; Hu, J.; Zhao, S. L.; Liu, H. L.; Hu, Y. Chem. Eng. Sci. 2015, 137, 170.
[97] Buch, V.; Devlin, J. P. J. Chem. Phys. 1993, 98, 4195.
[98] Guo, F. Y.; Liu, Y.; Hu, J.; Liu, H. L.; Hu, Y. Chem. Eng. Sci. 2016, 149, 14.
[99] Li, S.; Chung, Y. G.; Snurr, R. Q. Langmuir 2016, 32, 10368.
[100] Moghadam, P. Z.; Fairen-Jimenez, D.; Snurr, R. Q. J. Mater. Chem. A 2016, 4, 529.
[101] Nazarian, D.; Camp, J. S.; Sholl, D. S. Chem. Mater. 2016, 28, 785.
[102] Qiao, Z. W.; Peng, C. W.; Zhou, J.; Jiang, J. W. J. Mater. Chem. A 2016, 4, 15904.
[103] Altintas, C.; Keskin, S. Chem. Eng. Sci. 2016, 139, 49.
[104] Erucar, I.; Keskin, S. J. Membr. Sci. 2016, 514, 313.
[105] Aghaji, M. Z.; Fernandez, M.; Boyd, P. G.; Daff, T. D.; Woo, T. K. Eur. J. Inorg. Chem. 2016, 2016, 4505.
[106] Fernandez, M.; Barnard, A. S. ACS Comb. Sci. 2016, 18, 243.
[107] Chung, Y. G.; Gomez-Gualdron, D. A.; Li, P.; Leperi, K. T.; Deria, P.; Zhang, H. D.; Vermeulen, N. A.; Stoddart, J. F.; You, F. Q.; Hupp, J. T.; Farha, O. K.; Snurr, R. Q. Sci. Adv. 2016, 2, e1600909.
[108] Chung, Y. G.; Bai, P.; Haranczyk, M.; Leperi, K. T.; Li, P.; Zhang, H. D.; Wang, T. C.; Duerinck, T.; You, F. Q.; Hupp, J. T.; Farha, O. K.; Siepmann, J. I.; Snurr, R. Q. Chem. Mater. 2017, 29, 6315.
[109] Boato, G.; Casanova, G. Physica 1961, 27, 571.
[110] Van Heest, T.; Teich-McGoldrick, S. L.; Greathouse, J. A.; Allendorf, M. D.; Sholl, D. S. J. Phys. Chem. C 2012, 116, 13183.
[111] Pardakhti, M.; Moharreri, E.; Wanik, D.; Suib, S. L.; Srivastava, R. ACS Comb. Sci. 2017, 19, 640.
[112] Borboudakis, G.; Stergiannakos, T.; Frysali, M.; Klontzas, E.; Tsamardinos, I.; Froudakis, G. E. npj Comput. Mater. 2017, 3, 1.
[113] Kadioglu, O.; Keskin, S. Sep. Purif. Technol. 2018, 191, 192.
[114] Martin, M. G.; Siepmann, J. I. J. Phys. Chem. B 1998, 102, 2569.
[115] Buch, V. J. Chem. Phys. 1994, 100, 7610.
[116] Altintas, C.; Erucar, I.; Keskin, S. ACS Appl. Mater. Interfaces 2018, 10, 3668.
[117] Budhathoki, S.; Ajayi, O.; Steckel, J. A.; Wilmer, C. E. Energy Environ. Sci. 2018, DOI:10.1039/c8ee02582g.
[118] Qiao, Z. W.; Xu, Q. S.; Jiang, J. W. J. Membr. Sci. 2018, 551, 47.
[119] Anderson, R.; Rodgers, J.; Argueta, E.; Biong, A.; Gómez-Gualdrón, D. A. Chem. Mater. 2018, 30, 6325.
[120] Potoff, J. J.; Siepmann, J. I. AIChE J. 2001, 47, 1676.
[121] Serratosa, J. M.; Gómez-Garre, P.; Gallardo, M. E.; Anta, B.; De Bernabé, D. B.-V.; Lindhout, D.; Augustijn, P. B.; Tassinari, C. A.; Michelucci, R.; Malafosse, A. Hum. Mol. Genet. 1999, 8, 345.
[122] Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926.
[123] Horn, H. W.; Swope, W. C.; Pitera, J. W.; Madura, J. D.; Dick, T. J.; Hura, G. L.; Head-Gordon, T. J. Chem. Phys. 2004, 120, 9665.
[124] Raccuglia, P.; Elbert, K. C.; Adler, P. D.; Falk, C.; Wenny, M. B.; Mollo, A.; Zeller, M.; Friedler, S. A.; Schrier, J.; Norquist, A. J. Nature 2016, 533, 73.
[125] Schalkoff, R. J. Artificial Neural Networks, McGraw-Hill, New York, 1997.
[126] Gandara, F.; Furukawa, H.; Lee, S.; Yaghi, O. M. J. Am. Chem. Soc. 2014, 136, 5271.
[127] Koh, H. S.; Rana, M. K.; Wong-Foy, A. G.; Siegel, D. J. J. Phys. Chem. C 2015, 119, 13451.
[128] Wang, X.; Fordham, S.; Zhou, H. C. ACS Symp. Ser. 2015, 1213, 173.
[129] Zhang, H.; Li, G. L.; Zhang, K. G.; Liao, C. Y. Acta Chim. Sinica 2017, 75, 841. (张贺, 李国良, 张可刚, 廖春阳, 化学学报, 2017, 75, 841.)
[130] DOE targets for onboard hydrogen storage systems for light-duty vehicles, http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage.pdf.
[131] The Toyota Fuel Cell Vehicle:a turning point from the inside out, http://www.toyota.com/mirai/fcv.html.
[132] Total hydrogen station in Munich first to feature standard compressed H2 and BMW cryocompressed H2 technology, http://www. greencardcongress.com/2015/07/20150715.
[133] Engineering an adsorbent based hydrogen storage system:What have we learned? https://www.energy.gov/sites/prod/files/2015/02/f19/fcto_h2_storage_summit_siegel.pdf.
[134] Kale, C.; Gorak, A.; Schoenmakers, H. Int. J. Greenhouse Gas Control 2013, 17, 294.
[135] Jameson, C. J.; Jameson, A. K.; Lim, H. M. J. Chem. Phys. 1997, 107, 4364.
[136] Ryan, P.; Farha, O. K.; Broadbelt, L. J.; Snurr, R. Q. AIChE J. 2011, 57, 1759.
[137] Wu, L. M.; Xiao, J.; Wu, Y.; Xian, S. K.; Miao, G.; Wang, H. H.; Li, Z. Langmuir 2014, 30, 1080.
[138] Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303. (卞磊, 李炜, 魏振振, 刘晓威, 李松, 化学学报, 2018, 76, 303.)

Outlines

/