Digestive Ripening at Nanoscale and Its Application in the Preparation of Monodisperse Nanomaterials
Received date: 2018-12-25
Online published: 2019-01-28
Supported by
Project supported by the Shandong Provincial Natural Science Foundation (No. ZR2017MB042) and Qingdao University of Science and Technology, Division of Chemistry (No. QUSTHX201812).
Recently, a digestive ripening process at nanoscale has been widely used to prepare monodisperse nanoparticles (NPs), especially for sub-10 nm small NPs, with significant advantages such as the very narrow size distribution of the obtained nanoparticles, the versatile applications for various nanoparticles and the simple operation process. However, no Chinese references are reported on digestive ripening process till now, which may limit the cognition and utility of digestive ripening method for some domestic scientists. Thus, this review starts from the discovery of the phenomenon and the proposal of mechanism for digestive ripening at nanoscale, to the analysis of influence factors including the precursor in the precipitation reaction, the digestive ripening reagent, heating treatment temperature and processing time, solvent media and so on. Then, theoretical hypothesis and the derived results are introduced based on the charged surface, the curvature effect, the interaction between NP surface and attached ligand layer, the diffusion effect and the competing reaction balance in the digestive ripening process. Subsequently, the important applications of digestive ripening method in the preparation of monodisperse nanomaterials of metal NPs, alloy NPs, quantum dots of metal oxide and metal chalcogenide, and other NPs are discussed, the obtained small metal or alloy NPs show a perfect sphere shape and a very narrow size distribution (relative standard deviation less than ±5%). Finally, the broad perspectives are proposed in the NP assembly for optical, electric and magnetic nanodevices, and the heterogeneous catalysis of monodisperse metal, alloy and semiconducotr NPs via the digestive ripening method.
Key words: nanoparticles; digestive ripening; monodisperse; mechanism; self-assembly
Li Dongxiang , Gao Yuanyuan , Zhang Xiaofang , Xia Haibing . Digestive Ripening at Nanoscale and Its Application in the Preparation of Monodisperse Nanomaterials[J]. Acta Chimica Sinica, 2019 , 77(4) : 305 -315 . DOI: 10.6023/A18120512
[1] Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Angew. Chem., Int. Ed. 2007, 46, 4630.
[2] Yan, Y.; Li, J.; Yang, Y. Prog. Chem. 2009, 21, 971. (严亚, 李津如, 杨云, 化学进展, 2009, 21, 971.)
[3] Shi, R.; Gao, G.; Yi, R.; Zhou, K.; Qiu, G.; Liu, X. Chin. J. Chem. 2009, 27, 739.
[4] Ji, X. H.; Song, X. N.; Li, J.; Bai, Y. B.; Yang, W. S.; Peng, X. G. J. Am. Chem. Soc. 2007, 129, 13939.
[5] Li, H. S.; Xia, H. B.; Wang, D. Y.; Tao, X. T. Langmuir 2013, 29, 5074.
[6] Fu, Y.; Du, Y.; Yang, P.; Li, J.; Jiang, L. Sci. China B:Chem. 2007, 50, 494.
[7] Liu, N.; Wang, K.; Gao, Y. Y.; Li, D. X.; Lin, W. H.; Li, C. F. Colloid. Surf. A:Physicochem. Engin. Asp. 2017, 535, 251.
[8] Li, C. F.; Li, D. X.; Wan, G. Q.; Xu, J.; Hou, W. G. Nanoscale Res. Lett. 2011, 6, 440.
[9] Zaiser, E. M.; LaMer, V. K. J. Colloid Sci. 1948, 3, 571.
[10] LaMer, V. K.; Dinegar, R. H. J. Am. Chem. Soc. 1950, 72, 4847.
[11] Zhang, P. N.; Li, Y. J.; Wang, D. Y.; Xia, H. B. Particle Particle Sys. Character. 2016, 33, 924.
[12] Li, D. X.; Jang, Y. J.; Lee, J.; Lee, J. E.; Kochuveedu, S. T.; Kim, D. H. J. Mater. Chem. 2011, 21, 16453.
[13] Ostwald, W. Zeitsch. Phys. Chem. 1897, 22, 289.
[14] Zhang, Z.; Wang, Z.; He, S.; Wang, C.; Jin, M.; Yin, Y. Chem. Sci. 2015, 6, 5197.
[15] Lin, X. M.; Sorensen, C. M.; Klabunde, K. J. J. Nanopart. Res. 2000, 2, 157.
[16] Shimpi, J. R.; Sidhaye, D. S.; Prasad, B. L. V. Langmuir 2017, 33, 9491.
[17] Sidhaye, D. S.; Prasad, B. L. V. New J. Chem. 2011, 35, 755.
[18] Yang, Y.; Gong, X.; Zeng, H.; Zhang, L.; Zhang, X.; Zou, C.; Huang, S. J. Phys. Chem. C 2010, 114, 256.
[19] Ji, Y.; Yang, S.; Guo, S.; Song, X.; Ding, B.; Yang, Z. Colloid. Surf. A:Physicochem. Engin. Asp. 2010, 372, 204.
[20] Liu, S. L.; Han, M.; Shi, Y.; Zhang, C. Z.; Chen, Y.; Bao, J. C.; Dai, Z. H. Europ. J. Inorg. Chem. 2012, 3740.
[21] Zhang, S.; Zhang, L.; Liu, K.; Liu, M.; Yin, Y.; Gao, C. Mater. Chem. Front. 2018, 2, 1328.
[22] Wang, P.; Qi, X.; Zhang, X.; Wang, T.; Li, Y.; Zhang, K.; Zhao, S.; Zhou, J.; Fu, Y. Nanoscale Res. Lett. 2017, 12, 25.
[23] Cardenas-Trivino, G.; Klabunde, K. J.; Dale, E. B. Langmuir 1987, 3, 986.
[24] Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc., Chem. Commun. 1994, 801.
[25] Leff, D. V.; Ohara, P. C.; Heath, J. R.; Gelbart, W. M. J. Phys. Chem. 1995, 99, 7036.
[26] Lin, X. M.; Wang, G. M.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. B 1999, 103, 5488.
[27] Lin, X. M.; Sorensen, C. M.; Klabunde, K. J. Chem. Mater. 1999, 11, 198.
[28] Bhaskar, S. P.; Vijayan, M.; Jagirdar, B. R. J. Phys. Chem. C 2014, 118, 18214.
[29] Dreier, T. A.; Ackerson, C. J. Angew. Chem., Int. Ed. 2015, 54, 9249.
[30] Samia, A. C. S.; Schlueter, J. A.; Jiang, J. S.; Bader, S. D.; Qin, C.-J.; Lin, X.-M. Chem. Mater. 2006, 18, 5203.
[31] Stoeva, S. I.; Zaikovski, V.; Prasad, B. L. V.; Stoimenov, P. K.; Sorensen, C. M.; Klabunde, K. J. Langmuir 2005, 21, 10280.
[32] Mary Jacob, N.; Thomas, T. Ceramics Int. 2014, 40, 13945.
[33] Shetty, A.; Saha, A.; Makkar, M.; Viswanatha, R. Phys. Chem. Chem. Phys. 2016, 18, 25887.
[34] Talluri, B.; Thomas, T. Chem. Phys. Lett 2017, 685, 84.
[35] Lin, M.-L.; Yang, F.; Lee, S. Colloid. Surf. A:Physicochem. Engin. Asp. 2014, 448, 16.
[36] Yang, Z.; Klabunde, K. J.; Sorensen, C. M. J. Phys. Chem. C 2007, 111, 18143.
[37] Sidhaye, D. S.; Prasad, B. L. V. Chem. Mater. 2010, 22, 1680.
[38] Prasad, B. L. V.; Stoeva, S. I.; Sorensen, C. M.; Klabunde, K. J. Langmuir 2002, 18, 7515.
[39] Sahu, P.; Shimpi, J.; Lee, H. J.; Lee, T. R.; Prasad, B. L. V. Langmuir 2017, 33, 1943.
[40] Silvestri, A.; Polito, L.; Bellani, G.; Zambelli, V.; Jumde, R. P.; Psaro, R.; Evangelisti, C. J. Colloid Interf. Sci. 2015, 439, 28.
[41] Naoe, K.; Petit, C.; Pileni, M. P. J. Phys. Chem. C 2007, 111, 16249.
[42] Naoe, K.; Petit, C.; Pileni, M. P. Langmuir 2008, 24, 2792.
[43] Sun, Y. J.; Jose, D.; Sorensen, C.; Klabunde, K. J. Nanomaterials 2013, 3, 370.
[44] Sahu, P.; Prasad, B. L. V. Chem. Phys. Lett 2012, 525~526, 101.
[45] Mohrhusen, L.; Osmic, M. RSC Adv. 2017, 7, 12897.
[46] Prasad, B. L. V.; Stoeva, S. I.; Sorensen, C. M.; Klabunde, K. J. Chem. Mater. 2003, 15, 935.
[47] Samia, A. C. S.; Hyzer, K.; Schlueter, J. A.; Qin, C.-J.; Jiang, J. S.; Bader, S. D.; Lin, X.-M. J. Am. Chem. Soc. 2005, 127, 4126.
[48] Kholmicheva, N.; Yang, M. R.; Moroz, P.; Eckard, H.; Vore, A.; Cassidy, J.; Pushina, M.; Boddy, A.; Porotnikov, D.; Anzenbacher, P.; Zamkov, M. J. Phys. Chem. C 2018, 122, 23623.
[49] Griffin, F.; Fitzmaurice, D. Langmuir 2007, 23, 10262.
[50] Su, Y. Y.; Yang, F. Q.; Lee, S. Mater. Res. Exp. 2015, 2, 055007.
[51] Sahu, P.; Prasad, B. L. V. Nanoscale 2013, 5, 1768.
[52] Sahu, P.; Prasad, B. L. V. Langmuir 2014, 30, 10143.
[53] Destro, P.; Colombo, M.; Prato, M.; Brescia, R.; Manna, L.; Zanchet, D. RSC Adv. 2016, 6, 22213.
[54] Lin, M. L.; Yang, F. Q.; Peng, J. S.; Lee, S. J. Appl. Phys. 2014, 115, 054312.
[55] Razgoniaeva, N.; Yang, M.; Garrett, P.; Kholmicheva, N.; Moroz, P.; Eckard, H.; Royo Romero, L.; Porotnikov, D.; Khon, D.; Zamkov, M. Chem. Mater. 2018, 30, 1391.
[56] Shimpi, J. R.; Chaudhari, V. R.; Prasad, B. L. V. Langmuir 2018, 34, 13680.
[57] Powell, J. A.; Schwieters, R. M.; Bayliff, K. W.; Herman, E. N.; Hotvedt, N. J.; Changstrom, J. R.; Chakrabarti, A.; Sorensen, C. M. RSC Adv. 2016, 6, 70638.
[58] Lohman, B. C.; Powell, J. A.; Cingarapu, S.; Aakeroy, C. B.; Chakrabarti, A.; Klabunde, K. J.; Law, B. M.; Sorensen, C. M. Phys. Chem. Chem. Phys. 2012, 14, 6509.
[59] Talluri, B.; Prasad, E.; Thomas, T. J. Mol. Liq. 2018, 265, 771.
[60] Talluri, B.; Prasad, E.; Thomas, T. Superlatt. Microstruct. 2018, 113, 600.
[61] Seth, J.; Prasad, B. L. V. Nano Res. 2016, 9, 2007.
[62] Lee, D.-K.; Park, S.-I.; Lee, J. K.; Hwang, N.-M. Acta Mater. 2007, 55, 5281.
[63] Lee, D. K.; Hwang, N. M. Scripta Mater. 2009, 61, 304.
[64] Clark, M. D. J. Nanopart. Res. 2014, 16, 2264.
[65] Irzhak, V. I. Russ. J. Phys. Chem. A 2017, 91, 1503.
[66] Thomas, T.; Sethuraman, S.; Satyam, D.; Kumar, D.; Kannadasan, B.; Anderson, A.; Prashant, S.; Vijayakrishnan, R.; Khan, S.; Das, P.; Kumar, M.; Bisi, K.; Chinta, Y.; Talluri, B. Appl. Surf. Sci. 2018, 448, 248.
[67] Manzanares, J. A.; Peljo, P.; Girault, H. H. J. Phys. Chem. C 2017, 121, 13405.
[68] Stoeva, S.; Klabunde, K. J.; Sorensen, C. M.; Dragieva, I. J. Am. Chem. Soc. 2002, 124, 2305.
[69] Cingarapu, S.; Yang, Z.; Sorensen, C. M.; Klabunde, K. J. Chem. Mater. 2009, 21, 1248.
[70] Cingarapu, S.; Yang, Z.; Sorensen, C. M.; Klabunde, K. J. J. Nanomater. 2012, 2012, 312087.
[71] Uppal, M. A.; Kafizas, A.; Lim, T. H.; Parkin, I. P. New J. Chem. 2010, 34, 1401.
[72] Sidhaye, D. S.; Prasad, B. L. V. Chem. Phys. Lett 2008, 454, 345.
[73] Han, M.; Liu, S. L.; Nie, X. P.; Yuan, D.; Sun, P. P.; Dai, Z. H.; Bao, J. C. RSC Adv. 2012, 2, 6061.
[74] Smetana, A. B.; Klabunde, K. J.; Sorensen, C. M. J. Colloid Interf. Sci. 2005, 284, 521.
[75] Zhang, Q.; Xie, J.; Yang, J.; Lee, J. Y. ACS Nano 2009, 3, 139.
[76] Li, P.; Peng, Q.; Li, Y. Chem. Eur. J. 2011, 17, 941.
[77] Shaik, A. H.; Chakraborty, J. RSC Adv. 2015, 5, 85974.
[78] Arora, N.; Jagirdar, B. R. J. Mater. Chem. 2012, 22, 20671.
[79] Sanyal, U.; Datta, R.; Jagirdar, B. R. RSC Adv. 2012, 2, 259.
[80] Kalidindi, S. B.; Jagirdar, B. R. Inorg. Chem. 2009, 48, 4524.
[81] Cingarapu, S.; Yang, Z.; Sorensen, C. M.; Klabunde, K. J. Inorg. Chem. 2011, 50, 5000.
[82] Naoe, K.; Kataoka, M.; Kawagoe, M. Colloid. Surf. A:Physicochem. Engin. Asp. 2010, 364, 116.
[83] Seth, J.; Kona, C. N.; Das, S.; Prasad, B. L. V. Nanoscale 2015, 7, 872.
[84] Jose, D.; Jagirdar, B. R. J. Solid State Chem. 2010, 183, 2059.
[85] Shankar, R.; Wu, B. B.; Bigioni, T. P. J. Phys. Chem. C 2010, 114, 15916.
[86] Jose, D.; Matthiesen, J. E.; Parsons, C.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. Lett. 2012, 3, 885.
[87] Muhammed, M. A. H.; Verma, P. K.; Pal, S. K.; Kumar, R. C. A.; Paul, S.; Omkumar, R. V.; Pradeep, T. Chem. Eur. J. 2009, 15, 10110.
[88] Qian, H.; Jin, R. Chem. Mater. 2011, 23, 2209.
[89] Qian, H.; Zhu, Y.; Jin, R. ACS Nano 2009, 3, 3795.
[90] Qian, H. Pure Appl. Chem. 2014, 86, 27.
[91] Nimmala, P. R.; Jupally, V. R.; Dass, A. Langmuir 2014, 30, 2490.
[92] Nimmala, P. R.; Dass, A. J. Am. Chem. Soc. 2014, 136, 17016.
[93] Qian, H.; Zhu, Y.; Jin, R. Proc. Nat. Acad. Sci. 2012, 109, 696.
[94] Kumara, C.; Zuo, X.; Ilavsky, J.; Chapman, K. W.; Cullen, D. A.; Dass, A. J. Am. Chem. Soc. 2014, 136, 7410.
[95] Bhattacharya, C.; Arora, N.; Jagirdar, B. R. Langmuir 2019, ASAP, doi:10.1021/acs.langmuir.1028b02208.
[96] Jose, D.; Jagirdar, B. R. J. Phys. Chem. C 2008, 112, 10089.
[97] Liu, F.-K.; Chang, Y.-C. Chromatographia 2011, 74, 767.
[98] Zhang, Q. B.; Xie, J. P.; Liang, J.; Lee, J. Y. Adv. Funct. Mater. 2009, 19, 1387.
[99] Kalidindi, S. B.; Jagirdar, B. R. Chem. Asian J. 2009, 4, 835.
[100] Chen, D.; Xu, L.; Liu, H.; Yang, J. Green Energy & Environment 2019, doi:10.1016/j.gee.2018.1009.1002.
[101] Bhaskar, S. P.; Jagirdar, B. R. J. All. Comp. 2017, 694, 581.
[102] Heller, H.; Ahrenstorf, K.; Broekaert, J. A. C.; Weller, H. Phys. Chem. Chem. Phys. 2009, 11, 3257.
[103] Chokprasombat, K.; Koyvanich, K.; Sirisathitkul, C.; Harding, P.; Rugmai, S. Trans. Indian Inst. Metal. 2016, 69, 733.
[104] Smetana, A. B.; Klabunde, K. J.; Sorensen, C. M.; Ponce, A. A.; Mwale, B. J. Phys. Chem. B 2006, 110, 2155.
[105] Destro, P.; Cantaneo, D. A.; Meira, D. M.; Honorio, G. D.; da Costa, L. S.; Bueno, J. M. C.; Zanchet, D. Europ. J. Inorg. Chem. 2018, 3770.
[106] Arora, N.; Jagirdar, B. R. Phys. Chem. Chem. Phys. 2014, 16, 11381.
[107] Arora, N.; Jagirdar, B. R.; Klabunde, K. J. J. All. Comp. 2014, 610, 35.
[108] Bhattacharya, C.; Jagirdar, B. R. J. Phys. Chem. C 2018, 122, 10559.
[109] Uppal, M. A.; Ewing, M. B.; Parkin, I. P. Eur. J. Inorg. Chem. 2011, 2011, 4534.
[110] Shore, M. S.; Wang, J.; Johnston-Peck, A. C.; Oldenburg, A. L.; Tracy, J. B. Small 2011, 7, 230.
[111] Chee, S. S.; Lee, J. H. J. Mater. Chem. C 2014, 2, 5372.
[112] Heroux, D.; Ponce, A.; Cingarapu, S.; Klabunde, K. J. Adv. Funct. Mater. 2007, 17, 3562.
[113] Jacob, N. M.; Thomas, T. RSC Adv. 2015, 5, 15154.
[114] Talluri, B.; Prasad, E.; Thomas, T. Superlatt. Microstruct. 2018, 116, 122.
[115] Cingarapu, S.; Ikenberry, M. A.; Hamal, D. B.; Sorensen, C. M.; Hohn, K.; Klabunde, K. J. Langmuir 2012, 28, 3569.
[116] Green, M.; Harwood, H.; Barrowman, C.; Rahman, P.; Eggeman, A.; Festry, F.; Dobson, P.; Ng, T. J. Mater. Chem. 2007, 17, 1989
[117] Mittal, M.; Sapra, S. Pramana-J. Phys. 2015, 84, 1049.
[118] Kalita, M.; Cingarapu, S.; Roy, S.; Park, S. C.; Higgins, D.; Jankowiak, R.; Chikan, V.; Klabunde, K. J.; Bossmann, S. H. Inorg. Chem. 2012, 51, 4521.
[119] Bhaskar, S. P.; Jagirdar, B. R. J. Chem. Sci. 2012, 124, 1175.
[120] Kalidindi, S. B.; Jagirdar, B. R. J. Phys. Chem. C 2008, 112, 4042.
[121] Yoder, T. S.; Cloud, J. E.; Leong, G. J.; Molk, D. F.; Tussing, M.; Miorelli, J.; Ngo, C.; Kodambaka, S.; Eberhart, M. E.; Richards, R. M.; Yang, Y. Chem. Mater. 2014, 26, 6743.
[122] Jeong, J.; Kim, N.; Kim, M. G.; Kim, W. Chem. Mater. 2016, 28, 172.
[123] Shaikh, P. A.; Banerjee, A.; Game, O.; Kolekar, Y.; Kale, S.; Ogale, S. Phys. Chem. Chem. Phys. 2013, 15, 5091.
[124] Bhaskar, S. P.; Karthika, M. S.; Jagirdar, B. R. Chemistryselect 2018, 3, 6638.
[125] Schultz, D. G.; Lin, X.-M.; Li, D.; Gebhardt, J.; Meron, M.; Viccaro, J.; Lin, B. J. Phys. Chem. B 2006, 110, 24522.
[126] Griesemer, S. D.; You, S. S.; Kanjanaboos, P.; Calabro, M.; Jaeger, H. M.; Rice, S. A.; Lin, B. Soft Matter 2017, 13, 3125.
[127] Shaik, A. H.; Reddy, D. S. Mater. Res. Exp. 2017, 4, 035043.
[128] He, J.; Lin, X.-M.; Divan, R.; Jaeger, H. M. Small 2011, 7, 3487.
[129] He, J.; Lin, X.-M.; Chan, H.; Vukovic, L.; Král, P.; Jaeger, H. M. Nano Lett. 2011, 11, 2430.
[130] Urban, J. J.; Talapin, D. V.; Shevchenko, E. V.; Kagan, C. R.; Murray, C. B. Nat. Mater. 2007, 6, 115.
[131] Ye, X.; Chen, J.; Murray, C. B. J. Am. Chem. Soc. 2011, 133, 2613.
[132] García-Barrasa, J.; López-de-Luzuriaga, J. M.; Monge, M.; Soulantica, K.; Viau, G. J. Nanopart. Res. 2011, 13, 791.
[133] Stoeva, S. I.; Prasad, B. L. V.; Uma, S.; Stoimenov, P. K.; Zaikovski, V.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. B 2003, 107, 7441.
[134] He, J.; Kanjanaboos, P.; Frazer, N. L.; Weis, A.; Lin, X.-M.; Jaeger, H. M. Small 2010, 6, 1449.
[135] Wang, Y.; Chan, H.; Narayanan, B.; McBride, S. P.; Sankaranarayanan, S. K. R. S.; Lin, X.-M.; Jaeger, H. M. ACS Nano 2017, 11, 8026.
[136] Wang, Y.; Kanjanaboos, P.; Barry, E.; McBride, S.; Lin, X.-M.; Jaeger, H. M. Nano Lett. 2010, 14, 826.
[137] Lin, X. M.; Jaeger, H. M.; Sorensen, C. M.; Klabunde, K. J. J. Phys. Chem. B 2001, 105, 3353.
[138] Zhu, B.; Gong, S.; Cheng, W. Chem. Soc. Rev. 2019, doi:10.1039/C1038CS00609A.
[139] Kagan, C. R. Chem. Soc. Rev. 2019, doi:10.1039/C1038CS00629F.
[140] Boles, M. A.; Engel, M.; Talapin, D. V. Chem. Rev. 2016, 116, 11220.
[141] Ortega, S.; Ibáñez, M.; Liu, Y.; Zhang, Y.; Kovalenko, M. V.; Cadavid, D.; Cabot, A. Chem. Soc. Rev. 2017, 46, 3510.
[142] Wang, Y.; Wang, M.; Li, J.; Wei, Z. Acta Chim. Sinica 2019, 77, 84. (王艺霖, 王敏杰, 李静, 魏子栋, 化学学报, 2019, 77, 84.)
[143] Li, N. Chin. J. Chem. 2016, 34, 1129.
[144] Cao, J.; Zhu, Z.; Zhao, W.; Xu, J.; Chen, Z. Chin. J. Chem. 2016, 34, 1086.
[145] Scanlon, M. D.; Smirnov, E.; Stockmann, T. J.; Peljo, P. Chem. Rev. 2018, 118, 3722.
[146] Seth, J.; Dubey, P.; Chaudhari, V. R.; Prasad, B. L. V. New J. Chem. 2018, 42, 402.
/
〈 |
|
〉 |