Article

Sulfonyl Chlorides Mediated Alkynylation of Non-activated Alkenes via Distal Alkynyl Group Migration

  • Nana Tang, ,
  • Xin Shao, ,
  • Mingyang Wang, ,
  • Xinxin Wu, ,
  • Chen Zhu,
Expand
  • aCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123
    bKey Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2019-05-01

  Online published: 2019-06-04

Supported by

Project supported by the National Natural Science Foundation of China(No. 21722205)

Abstract

Radical-mediated difunctionalization of alkenes through the remote functional group migration (FGM) process paves an ingenious avenue for simultaneous cleavage and reconstruction of C—C bonds. Recently, our group has systematically disclosed the strategy of remote FGM for radical-mediated difunctionalization of unactivated alkenes. A portfolio of functional groups including cyano, heteroaryl, alkynyl, oximino, and carbonyl showcase the migratory aptitude, leading to new C—C bonds under radical conditions. Meanwhile, a series of other chemical bonds such as C—C, C—N, C—P, C—Si, and C—S are readily constructed in the reaction. Considering the synthetic utility and flexible transformation of alkynes, the radical alkynylation of unactivated alkenes via remote alkynyl migration we firstly reported provides an efficient approach for the incorporation of alkynes and has received considerable attention. On the other hand, fluorine- and sulfonyl-containing molecules play vital roles in organic and medicinal chemistry owing to their important chemical and physical characters. Therefore, the concomitant introduction of an alkynyl and a trifluoromethyl/sulfonyl group into one molecule is of great synthetic value. Herein we report a useful method for carbo-trifluoroalkylation/sulfonylation of unactivated olefins. The addition of extrinsic radical to alkene triggers the intramolecular FGM via a five-membered transition state along with a cascade of bond fission and formation. The typical procedure is as follows: a mixture of propargyl alcohol 1, sulfonyl chloride, fac-Ir(ppy)3, and base is loaded in a flame-dried reaction vial which is subjected to evacuation/flushing with nitrogen three times. Solvent is added to the mixture via syringe and the mixture is then stirred at 25 ℃ until the starting material is consumed monitored by TLC. The mixture is concentrated, and purified by flash column chromatography on silica gel (eluent: petroleum ether/ethyl acetate) to give the product.

Cite this article

Nana Tang, , Xin Shao, , Mingyang Wang, , Xinxin Wu, , Chen Zhu, . Sulfonyl Chlorides Mediated Alkynylation of Non-activated Alkenes via Distal Alkynyl Group Migration[J]. Acta Chimica Sinica, 2019 , 77(9) : 922 -926 . DOI: 10.6023/A19050158

References

[1] For selected reviews: (a) Chen, F.; Wang, T.; Jiao, N . Chem. Re. 2014, 114, 8613;
[1] (b) Souillart, L.; Cramer, N . Chem. Re. 2015, 115, 9410;
[1] (c) Song, F.; Gou, T.; Wang, B.-Q.; Shi, Z.-J . Chem. Soc. Rev. 2018, 47, 7078;
[1] (d) Wu, X.; Zhu, C . Chem. Rec. 2018, 18, 587;
[1] (e) Wu, X.; Zhu, C . Chin. J. Chem. 2019, 37, 171;
[1] (f) Wang, B.; Liu, Y.; Hao, Z.; Hou, J.; Li, J.; Li, S.; Pan, S.; Zeng, M.; Wang, Z . Chin. J. Org. Chem. 2018, 38, 1872 (in Chinese).
[1] ( 王柏文, 刘园, 郝志峰, 侯佳琦, 李健怡, 李舒婷, 潘思慧, 曾铭豪, 汪朝阳 , 有机化学, 2018, 38, 1872.)
[1] (g) Liang, T.; Jiang, L.; Gan, M.; Su, X.; Li, Z . Chin. J. Org. Chem. 2017, 37, 3096 (in Chinese).
[1] ( 梁婷婷, 姜岚, 干苗苗, 苏鑫, 李争宁 , 有机化学, 2017, 37, 3096.)
[1] (h) Wu, K.; Song, C.; Cui, D . Chin. J. Org. Chem. 2017, 37, 586 (in Chinese).
[1] ( 吴空, 宋婵, 崔冬梅 , 有机化学, 2017, 37, 586.)
[1] (i) Zhong, J.-J.; Meng, Q.-Y.; Chen, B., Tung, C.-H.; Wu, L.-Z . Acta Chim. Sinica. 2017, 75, 34 (in Chinese).
[1] ( 钟建基, 孟庆元, 陈彬, 佟振合, 吴骊珠 , 化学学报, 2017, 75, 34.)
[2] For selected reviews on FGM.(a) Wu, X.; Wu, S.; Zhu, C . Tetrahedron Let. 2018, 59, 1328;
[2] (b) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C . Chem. Soc. Re. 2018, 47, 654;
[2] For selected examples from our group, see: (c) Wu, Z.; Ren, R.; Zhu, C.; . Angew. Chem. Int. Ed. 2016, 55, 10821;
[2] (d) Wu, Z.; Wang, D.; Liu, Y.; Huan, L.; Zhu, C . J. Am. Chem. Soc. 2017, 139, 1388;
[2] (e) Ren, R.; Wu, Z.; Huan, L.; Zhu, C . Adv. Synth. Catal. 2017, 359, 3052;
[2] (f) Ji, M.; Wu, Z.; Yu, J.; Wan, X.; Zhu, C . Adv. Synth. Catal. 2017, 359, 1959;
[2] (g) Wang, M.; Wu, Z.; Zhang, B.; Zhu, C . Org. Chem. Front. 2018, 5, 1896;
[2] (h) Yu, J.; Wang, D.; Xu, Y.; Wu, Z.; Zhu, C . Adv. Synth. Catal. 2018, 360, 744;
[2] (i) Zhang, H.; Wu, X.; Zhao, Q.; Zhu, C . Chem. Asian J. 2018, 13, 2453;
[2] (j) Chen, D.; Wu, Z.; Yao, Y.; Zhu, C . Org. Chem. Front. 2018, 5, 2370;
[2] (k) Tang, N.; Yang, S.; Wu, X.; Zhu, C . Tetrahedron. 2019, 75, 1639;
[2] (l) Chen, D.; Ji, M.; Yao, Y.; Zhu, C . Acta Chim. Sinica. 2018, 76, 951 (in Chinese).
[2] ( 陈栋, 吉梅山, 姚英明, 朱晨 , 化学学报, 2018, 76, 951.)
[2] (m) Ji, M.; Wu, Z.; Zhu, C . Chem. Commun. 2019, 55, 2368.
[3] For selected examples of remote FGM from other groups.(a) Thaharn, W.; Soorukram, D.; Kuhakarn, C.; Tuchinda, P.; Reutrakul, V.; Pohmakotr, M . Angew. Chem. Int. E. 2014, 53, 2212;
[3] (b) Li, L.; Li, Z.-L.; Wang, F.-L.; Guo, Z.; Cheng, Y.-F.; Wang, N.; Dong, X.-W.; Fang, C.; Liu, J.; Hou, C.; Tan, B.; Liu, X.-Y. . Nat. Commu. 2016, 7, 13852;
[3] (c) Li, Z.-L.; Li, X.-H.; Wang, N.; Yang, N.-Y.; Liu, X.-Y . Angew. Chem. Int. Ed. 2016, 55, 15100;
[3] (d) Li, L.; Li, Z.-L.; Gu, Q.-S.; Wang, N.; Liu, X.-Y . Sci. Adv. 2017, 3, e1701487;
[3] (e) Wang, N.; Li, L.; Li, Z.-L.; Yang, N.-Y.; Guo, Z.; Zhang, H.-X.; Liu, X.-Y . Org. Lett. 2016, 18, 6026;
[3] (f) Tang, X.; Studer, A . Angew. Chem. Int. Ed. 2018, 57, 814;
[3] (g) Wang, H.; Xu, Q.; Yu, S . Org. Chem. Front. 2018, 5, 2224;
[3] (h) He, Y.; Wang, Y.; Gao, J.; Zeng, L.; Li, S.; Wang, W.; Zheng, X.; Zhang, S.; Gu, L.; Li, G . Chem. Commun. 2018, 54, 7499;
[3] (i) Gu, L.; Gao, Y.; Ai, X.; Jin, C.; He, Y.; Li, G.; Yuan, M . Chem. Commun. 2017, 53, 12946;
[3] (j) Wei, X.-J.; No?l, T . J. Org. Chem. 2018, 83, 11377.
[4] Xu, Y.; Wu, Z.; Jiang, J.; Ke, Z.; Zhu, C . Angew. Chem. Int. E. 2017, 56, 4545.
[5] For selected examples of alkynyl migration.(a) Tang, X.; Studer, A . Chem. Sc. 2017, 8, 6888
[5] (b) Liu, J.; Li, W.; Xie, J.; Zhu, C . Org. Chem. Fron. 2018, 5, 797;
[5] (c) Zhao, Q.; Ji, X.-S.; Gao, Y.-Y.; Hao, W.-J.; Zhang, K.-Y.; Tu, S.-J.; Jiang, B . Org. Lett. 2018, 2. 3596.
[6] (a) Meadows, D. C.; Gervay-Hague, J . Med. Res. Re. 2006, 26, 793;
[6] (b) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X . Curr. Top. Med. Che. 2016, 16, 1200;
[6] (c) Shaaban, S.; Liang, S.; Liu, N.-W.; Manolikakes, G . Org. Biomol. Chem. 2017, 15, 1947;
[6] (d) Qiu, G.; Zhou, K.; Gao, L.; Wu, J . Org. Chem. Front. 2018, 5, 691.
Outlines

/