Recent Progress on Transition-Metal-Catalyzed Asymmetric C-H Bond Functionalization for the Synthesis of Biaryl Atropisomers
Received date: 2019-06-19
Online published: 2019-07-17
Supported by
Project supported by the National Natural Science Foundation of China (91856201, 21572250), the Initiative Postdocs Supporting Program (BX20180342) and China Postdoctoral Science Foundation (2019M650092).
Axial chirality is of significant importance in chiral molecules. Axially chiral biaryls are existed in numerous natural products and biologically active molecules. Moreover, they have been extensively used as chiral catalysts and chiral ligands in asymmetric catalysis. Due to the importance of these privileged scaffolds, considerable attention has been attracted to develop novel, efficient and practical methods for their asymmetric synthesis by utilizing chiral transition-metal catalysis or chiral organocatalysis. Among those reported elegant achievements, asymmetric C—H bond functionalization reactions are the most concise and efficient methods for the synthesis of axial chiral biaryls in terms of atom and step economies. With the advancement of transition-metal-catalyzed asymmetric C—H bond functionalization reactions, they largely promote the field of asymmetric synthesis of axially chiral biaryls. Recent progress on the development of synthesis of axially chiral biaryls via transition metal (Pd-, Rh-, and Ir-) catalyzed asymmetric C—H bond functionalization reactions are summarized in this review. Those mainly include:Rh-catalyzed enantioselective C(sp2)-H bond alkylation and arylation reactions with the combination of rhodium (I) catalyst precursors and chiral phosphine ligands; Rh-catalyzed enantioselective C(sp2)-H bond alkenylation, arylation and annulation reactions with well-defined chiral rhodium (Ⅲ)-Cp(SCp) complexes; Ir-catalyzed enantioselective C(sp2)-H bond arylation reactions with chiral iridium (Ⅲ)-Cp complex and chiral amino acid as co-catalyst; Pd-catalyzed diastereoselective C(sp2)-H bond alkenylation, iodination, and arylation reactions using chiral p-tolyl sulfoxide auxiliary or menthyl phenylphosphate group as a directing group; Pd-catalyzed intramolecular enantioselective C(sp2)-H bond arylation reaction with Pd(0) catalyst precursors and chiral TADDOL-phosphoramidites; Pd-catalyzed intermolecular enantioselective C(sp2)-H bond iodination, alkenylation, alkynylation, allylation and arylation reactions with Pd(Ⅱ) catalyst precursors and mono-N-protected amino acids (MPAAs). In addition, preparation of varieties of novel axially chiral ligands by utilizing these methods and their applications in catalytic asymmetric reactions are also covered. Meanwhile, applications of these methods as key steps in the synthesis of natural products are also discussed.
Wang Qiang , Gu Qing , You Shu-Li . Recent Progress on Transition-Metal-Catalyzed Asymmetric C-H Bond Functionalization for the Synthesis of Biaryl Atropisomers[J]. Acta Chimica Sinica, 2019 , 77(8) : 690 -704 . DOI: 10.6023/A19060222
[1] For selected reviews, (a) Chang, J.; Reiner, J.; Xie, J. Chem. Rev. 2005, 105, 4581.
(b) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev. 2009, 38, 3193.
(c) Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M. Chem. Rev. 2011, 111, 563.
[2] For selected works, see:(a) Wu, Y.-L.; Ferroni, F.; Pieraccini, S.; Schweizer, W. B.; Frank, B. B.; Spada, G. P.; Diederich, F. Org. Biomol. Chem. 2012, 10, 8016.
(b) Zhu, Y.-Y.; Wu, X.-D.; Gu, S.-X.; Pu, L. J. Am. Chem. Soc. 2019, 141, 175. For a review:(c) Pu, L. Acc. Chem. Res. 2012, 45, 150.
[3] (a) Clayden, J.; Moran, W. J.; Edwards, P. J.; LaPlante, S. R. Angew. Chem. Int. Ed. 2009, 48, 6398.
(b) LaPlante, S. R.; Edwards, P. J.; Fader, L. D.; Jakalian, A.; Hucke, O. ChemMedChem 2011, 6, 505.
(c) Zask, A.; Murphy, J.; Ellestad, G. A. Chirality 2013, 25, 265.
(d) Smyth, J. E.; Butler, N. M.; Keller, P. A. Nat. Prod. Rep. 2015, 32, 1562.
[4] For selected reviews, see:(a) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999.
(b) Brunel, J. M. Chem. Rev. 2007, 107, PR1.
(c) Yu, J.; Shi, F.; Gong, L.-Z. Acc. Chem. Res. 2011, 44, 1156.
(d) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047.
(e) Min, C.; Seidel, D. Chem. Soc. Rev. 2017, 46, 5889.
(f) Wang, Q.; Gu, Q.; You, S.-L. Angew. Chem. Int. Ed. 2019, 58, 6818. For a book, see:(g) Privileged Chiral Ligands and Catalysts, Ed.:Zhou, Q.-L., Wiley-VCH, Weinheim, Germany, 2011.
[5] For selected reviews, see:(a) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345.
(b) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155.
(c) Li, Y.-M.; Kwong, F.-Y.; Yu, W.-Y.; Chan, A. S. C. Coord. Chem. Rev. 2007, 251, 2119.
(d) Teichert, J. F.; Feringa, B. L. Angew. Chem. Int. Ed. 2010, 49, 2486.
(e) Gao, A.; Ye, Q.; Yu, J.; Liu, W. Chin. J. Org. Chem. 2017, 37, 47(in Chinese). (高安丽, 叶青松, 余娟, 刘伟平, 有机化学, 2017, 37, 47.)
(f) Zhu, X.; Niu, J.; Zhao, X.; Hao, X.; Song, M. Chin. J. Org. Chem. 2018, 38, 118. For selected recent works, see:(g) Dai, J.; Duan, X.; Zhou, J.; Fu, C.; Ma, S. Chin. J. Chem. 2018, 36, 387.
(h) Jia, X.; Ren, X.; Wang, Z.; Xia, C.; Ding, K. Chin. J. Org. Chem. 2019, 39, 207(in Chinese). (贾肖飞, 任新意, 王正, 夏春谷, 丁奎岭, 有机化学, 2019, 39, 207.) For a book, see:(i) Noyori, R. Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994.
[6] For recent reviews on the synthesis of axially chiral biaryls, see:(a) Baudoin, O. Eur. J. Org. Chem. 2005, 4223.
(b) Bringmann, G.; Price Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem. Int. Ed. 2005, 44, 5384.
(c) Wallace, T. W. Org. Biomol. Chem. 2006, 4, 3197.
(d) Tanaka, K. Chem. Asian J. 2009, 4, 508.
(e) Bringmann, G.; Menche, D. Acc. Chem. Res. 2011, 34, 615.
(f) Wencel-Delord, J.; Panossian, A.; Leroux, F. R.; Colobert, F. Chem. Soc. Rev. 2015, 44, 3418.
(g) Ma, G.; Sibi, M. P. Chem. Eur. J. 2015, 21, 11644.
(h) Kumarasamy, E.; Raghunathan, R.; Sibi, M. P.; Sivaguru, J. Chem. Rev. 2015, 115, 11239.
(i) Yang, H.; Yang, X.; Tang, W. Tetrahedron 2016, 72, 6143.
(j) Loxq, P.; Manoury, E.; Poli, R.; Deydier, E.; Labande, A. Coord. Chem. Rev. 2016, 308, 131.
(k) Renzi, P. Org. Biomol. Chem. 2017, 15, 4506.
(l) Zilate, B.; Castrogiovanni, A.; Sparr, C. ACS Catal. 2018, 8, 2981.
(m) Link, A.; Sparr, C. Chem. Soc. Rev. 2018, 47, 3804.
(n) Wang, Y.-B.; Tan, B. Acc. Chem. Res. 2018, 51, 534.
(o) Metrano, A. J.; Miller, S. J. Acc. Chem. Res. 2019, 52, 199.
(p) Zhang, S.; Liao, G.; Shi, B.-F. Chin. J. Org. Chem. 2019, 39, 1522(in Chinese). (张硕, 廖港, 史炳锋, 有机化学, 2019, 39, 1522.)
(q) Liao, G.; Zhou, T.; Yao, Q.-J.; Shi, B.-F. Chem. Commun. 2019, 55, 8514. For a book, see:(r) Atropisomerism and Axial Chirality, Ed.:Lassaletta, J. M., World Scientific, London, UK, 2019.
[7] Kakiuchi, F.; Le Gendre, P.; Yamada, A.; Ohtaki, H.; Murai, S. Tetrahedron:Asymmetry 2000, 11, 2647.
[8] For reviews on asymmetric C-H functionalization, see:(a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
(b) Yang, L.; Huang, H. Catal. Sci. Technol. 2012, 2, 1099.
(c) Engle, K. M.; Yu, J.-Q. J. Org. Chem. 2013, 78, 8927.
(d) Wencel-Delord, J.; Colobert, F. Chem. Eur. J. 2013, 19, 14010.
(e) Zheng, C.; You, S.-L. RSC Adv. 2014, 4, 6173.
(f) Pedroni, J.; Cramer, N. Chem. Commun. 2015, 51, 17647.
(g) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Chem. Rev. 2017, 117, 8908.
(h) Gao, D.-W.; Gu, Q.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2017, 50, 351;
(i) Saint-Denis, T. G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-F.; Yu, J.-Q. Science 2018, 359, 759. For a book, see:(j) Asymmetric Functionalization of C-H Bonds, Ed.:You, S.-L., RSC:Cambridge, UK, 2015.
[9] Zheng, J.; You, S.-L. Angew. Chem. Int. Ed. 2014, 53, 13244.
[10] (a) Ye, B.; Cramer, N. Science 2012, 338, 504.
(b) Ye, B.; Cramer, N. J. Am. Chem. Soc. 2013, 135, 636.
(c) Ye, B.; Donets, P. A.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 507.
(d) Ye, B.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 7896.
[11] Zheng, J.; Cui, W. J.; Zheng, C.; You, S.-L. J. Am. Chem. Soc. 2016, 138, 5242.
[12] Greßies, S.; Klauck, F. J. R.; Kim, J. H.; Daniliuc, C. G.; Glorius, F. Angew. Chem. Int. Ed. 2018, 57, 9950.
[13] Wang, Q.; Cai, Z.-J.; Liu, C.-X.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2019, 141, 9504.
[14] Jia, Z. J.; Merten, C.; Gontla, R.; Daniliuc, C. G.; Antonchick, A. P.; Waldmann, H. Angew. Chem. Int. Ed. 2017, 56, 2429.
[15] For reviews on chiral cyclopentadienyl ligands, see:(a) Ye, B.; Cramer, N. Acc. Chem. Res. 2015, 48, 1308.
(b) Newton, C. G.; Kossler, D.; Cramer, N. J. Am. Chem. Soc. 2016, 138, 3935.
[16] Shan, G.; Flegel, J.; Li, H.; Merten, C.; Ziegler, S.; Antonchick, A. P.; Waldmann, H. Angew. Chem. Int. Ed. 2018, 57, 14250.
[17] Tian, M.; Bai, D.; Zheng, G.; Chang, J.; Li, X. J. Am. Chem. Soc. 2019, 141, 9527.
[18] Jang, Y. S.; Dieckmann, M.; Cramer, N. Angew. Chem. Int. Ed. 2017, 56, 15088.
[19] Börner, A. Phosphorus Ligands in Asymmetric Catalysis:Synthesis and Applications, Vol. 1~3, Wiley-VCH, Weinheim, 2008.
[20] Cramer, N.; Jang, Y. S.; Wozniak, L.; Pedroni, J. Angew. Chem. Int. Ed. 2018, 57, 12901.
[21] For reviews:(a) Wencel-Delord, J.; Colobert, F. Synlett 2015, 26, 2644.
(b) Tang, K.-X.; Wang, C.-M.; Gao, T.-H.; Chen, L.; Fan, L.; Sun, L.-P. Adv. Synth. Catal. 2019, 361, 26.
[22] Wesch, T.; Leroux, F. R.; Colobert, F. Adv. Synth. Catal. 2013, 355, 2139.
[23] (a) Hazra, C. K.; Dherbassy, Q.; Wencel-Delord, J.; Colobert, F. Angew. Chem. Int. Ed. 2014, 53, 13871.
(b) Dherbassy, Q.; Schwertz, G.; Hazra, C. K.; Wesch, T.; Wencel-Delord, J.; Colobert, F. Phosphorus, Sulfur Silicon Relat. Elem. 2015, 190, 1339.
[24] Dherbassy, Q.; Schwertz, G.; Chessé, M.; Hazra, C. K.; Wencel-Delord, J.; Colobert, F. Chem. Eur. J. 2016, 22, 1735.
[25] Dherbassy, Q.; Wencel-Delord, J.; Colobert, F. Tetrahedron 2016, 72, 5238.
[26] Dherbassy, Q.; Djukic, J. P.; Wencel-Delord, J.; Colobert, F. Angew. Chem. Int. Ed. 2018, 57, 4668.
[27] (a) Ma, Y. N.; Zhang, H.-Y.; Yang, S.-D. Org. Lett. 2015, 17, 2034. For reviews, see:(b) Ma, Y. N.; Li, S. X.; Yang, S.-D. Acc. Chem. Res. 2017, 50, 1480.
(c) Zhang, Z.; Dixneuf, P. H.; Soule, J. F. Chem. Commun. 2018, 54, 7265.
[28] Albicker, M., R; Cramer, N. Angew. Chem. Int. Ed. 2009, 48, 9139.
[29] He, C.; Hou, M.; Zhu, Z.; Gu, Z. ACS Catal. 2017, 7, 5316.
[30] Newton, C. G.; Braconi, E.; Kuziola, J.; Wodrich, M. D.; Cramer, N. Angew. Chem. Int. Ed. 2018, 57, 11040.
[31] Yamaguchi, K.; Yamaguchi, J.; Studer, A.; Itami, K. Chem. Sci. 2012, 3, 2165.
[32] Yamaguchi, K.; Kondo, H.; Yamaguchi, J.; Itami, K. Chem. Sci. 2013, 4, 3753.
[33] Nishimoto, Y.; Kondo, H.; Yamaguchi, K.; Yokogawa, D.; Yamaguchi, J.; Itami, K.; Irle, S. J. Org. Chem. 2017, 82, 4900.
[34] Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2008, 47, 4882.
[35] Gao, D.-W.; Gu, Q.; You, S.-L. ACS Catal. 2014, 4, 2741.
[36] Li, S. X.; Ma, Y.-N.; Yang, S.-D. Org. Lett. 2017, 19, 1842.
[37] Zhang, F.-L.; Hong, K.; Li, T. J.; Park, H.; Yu, J.-Q. Science 2016, 351, 252.
[38] Yao, Q.-J.; Zhang, S.; Zhan, B.-B.; Shi, B.-F. Angew. Chem. Int. Ed. 2017, 56, 6617.
[39] Fan, J.; Yao, Q.-J.; Liu, Y.-H.; Liao, G.; Zhang, S.; Shi, B.-F. Org. Lett. 2019, 21, 3352.
[40] Liao, G.; Yao, Q.-J.; Zhang, Z.-Z.; Wu, Y.-J.; Huang, D. Y.; Shi, B.-F. Angew. Chem. Int. Ed. 2018, 57, 3661.
[41] Zhang, S.; Yao, Q.-J.; Liao, G.; Li, X.; Li, H.; Chen, H.-M.; Hong, X.; Shi, B.-F. ACS Catal. 2019, 9, 1956.
[42] Liao, G.; Li, B.; Chen, H.-M.; Yao, Q. J.; Xia, Y. N.; Luo, J.; Shi, B.-F. Angew. Chem. Int. Ed. 2018, 57, 17151.
[43] Liao, G.; Chen, H.-M.; Xia, Y.-N.; Li, B.; Yao, Q.-J.; Shi, B.-F. Angew. Chem. Int. Ed. 2019, DOI:10.1002/anie.201906700.
[44] Wen, W.; Chen, L.; Luo, M.-J.; Zhang, Y.; Chen, Y.-C.; Ouyang, Q.; Guo, Q.-X. J. Am. Chem. Soc. 2018, 140, 9774.
[45] Luo, J.; Zhang, T.; Wang, L.; Liao, G.; Yao, Q.-J.; Wu, Y.-J.; Zhan, B.-B.; Lan, Y.; Lin, X.-F.; Shi, B.-F. Angew. Chem. Int. Ed. 2019, 58, 6708.
[46] Sun, Q.-Y.; Ma, W.-Y.; Yang, K.-F.; Cao, J.; Zheng, Z.-J.; Xu, Z.; Cui, Y.-M.; Xu, L.-W. Chem. Commun. 2018, 54, 10706.
[47] Li, H.; Yan, X.; Zhang, J.; Guo, W.; Jiang, J.; Wang, J. Angew. Chem. Int. Ed. 2019, 58, 6732.
/
〈 |
|
〉 |