Acta Chim. Sinica ›› 2019, Vol. 77 ›› Issue (8): 690-704.DOI: 10.6023/A19060222 Previous Articles     Next Articles



王强, 顾庆, 游书力   

  1. 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032
  • 投稿日期:2019-06-19 发布日期:2019-07-17
  • 通讯作者: 游书力
  • 作者简介:王强,2012年和2018年在华中师范大学先后获得学士和博士学位(导师:肖文精教授和陆良秋教授).研究生期间还赴加拿大渥太华大学André M. Beauchemin课题组(2016.11~2018.5)进行交流学习,之后跟随上海有机化学研究所游书力研究员进行博士后研究,主要研究方向为过渡金属催化的不对称C-H键官能团化反应;顾庆,2001年毕业于华东理工大学,获学士学位;2005年和2008年分别获华东理工大学工学硕士和博士学位(导师:周其林教授,伍新燕教授).此后,分别在上海有机化学研究所游书力课题组(2009.02~2011.05)和德国哥廷根大学Lutz Ackermann课题组(2012.11~2013.10)从事博士后研究.2011年6月加入中国科学院上海有机化学研究所游书力课题组任副研究员.主要研究兴趣包括不对称催化以及C-H键官能团化研究;游书力,1996年毕业于南开大学,获得学士学位.随后加入中国科学院上海有机化学研究所,师从戴立信院士,2001获得博士学位.之后跟随Scripps研究所的Jeffery W.Kelly教授进行博士后研究.2004年,成为诺华基因组学研究所研究员(PI).2006年加入上海有机化学研究所金属有机化学国家重点实验室.主要研究兴趣包括不对称催化、合成方法学、天然产物合成以及药物化学.
  • 基金资助:


Recent Progress on Transition-Metal-Catalyzed Asymmetric C-H Bond Functionalization for the Synthesis of Biaryl Atropisomers

Wang Qiang, Gu Qing, You Shu-Li   

  1. State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
  • Received:2019-06-19 Published:2019-07-17
  • Contact: 10.6023/A19060222
  • Supported by:

    Project supported by the National Natural Science Foundation of China (91856201, 21572250), the Initiative Postdocs Supporting Program (BX20180342) and China Postdoctoral Science Foundation (2019M650092).

Axial chirality is of significant importance in chiral molecules. Axially chiral biaryls are existed in numerous natural products and biologically active molecules. Moreover, they have been extensively used as chiral catalysts and chiral ligands in asymmetric catalysis. Due to the importance of these privileged scaffolds, considerable attention has been attracted to develop novel, efficient and practical methods for their asymmetric synthesis by utilizing chiral transition-metal catalysis or chiral organocatalysis. Among those reported elegant achievements, asymmetric C—H bond functionalization reactions are the most concise and efficient methods for the synthesis of axial chiral biaryls in terms of atom and step economies. With the advancement of transition-metal-catalyzed asymmetric C—H bond functionalization reactions, they largely promote the field of asymmetric synthesis of axially chiral biaryls. Recent progress on the development of synthesis of axially chiral biaryls via transition metal (Pd-, Rh-, and Ir-) catalyzed asymmetric C—H bond functionalization reactions are summarized in this review. Those mainly include:Rh-catalyzed enantioselective C(sp2)-H bond alkylation and arylation reactions with the combination of rhodium (I) catalyst precursors and chiral phosphine ligands; Rh-catalyzed enantioselective C(sp2)-H bond alkenylation, arylation and annulation reactions with well-defined chiral rhodium (Ⅲ)-Cp(SCp) complexes; Ir-catalyzed enantioselective C(sp2)-H bond arylation reactions with chiral iridium (Ⅲ)-Cp complex and chiral amino acid as co-catalyst; Pd-catalyzed diastereoselective C(sp2)-H bond alkenylation, iodination, and arylation reactions using chiral p-tolyl sulfoxide auxiliary or menthyl phenylphosphate group as a directing group; Pd-catalyzed intramolecular enantioselective C(sp2)-H bond arylation reaction with Pd(0) catalyst precursors and chiral TADDOL-phosphoramidites; Pd-catalyzed intermolecular enantioselective C(sp2)-H bond iodination, alkenylation, alkynylation, allylation and arylation reactions with Pd(Ⅱ) catalyst precursors and mono-N-protected amino acids (MPAAs). In addition, preparation of varieties of novel axially chiral ligands by utilizing these methods and their applications in catalytic asymmetric reactions are also covered. Meanwhile, applications of these methods as key steps in the synthesis of natural products are also discussed.

Key words: transition metal catalysis, asymmetric catalysis, asymmetric C—H functionalization, axial chirality