Trace Detection of Rhodamine B in Infant Candy by g-C3N4/Ag Nanocomposite as Surface-Enhanced Raman Scattering Substrate
Received date: 2019-05-23
Online published: 2019-07-22
Supported by
Project supported by the National Natural Science Foundation of China(21473068);Project supported by the National Natural Science Foundation of China(21711540292);Project supported by the National Natural Science Foundation of China(21773080);the Jilin Province Science and Technology Development Plan Project(20180101295JC)
In recent years, food safety problems caused by illegal additions in infant foods have received widespread attention. Surface-enhanced Raman scattering (SERS) technique is used to rapidly and non-destructively detect the banned RhB that is usually added in food. In this study, we have prepared g-C3N4/Ag composites via a simple method successfully, their morphology and structure were characterized by transmission electron microscope (TEM), ultraviolet-visible (UV-Vis), X-ray diffraction (XRD), fluorescence spectrophotometer and confocal micro-Raman spectrometer (Raman). The g-C3N4 nanosheet possesses good adsorption performance due to its highly delocalized π-conjugated system, which acts as a carrier for Ag nanoparticles. Therefore, Ag nanoparticles are more uniformly and stably distributed on the surface of g-C3N4 nanosheets to form g-C3N4/Ag nanocomposite, which can be used for rapid adsorption and trace detection of RhB. In the experiment, the pH of the test and the absorbed time between the substrate and RhB were optimized. The influence of pH on the SPR of the substrate and the SERS intensity of the probe molecule were investigated in detail. As g-C3N4/Ag nanocomposite shows a significant higher absorption in the visible region around 500 nm than Ag nanoparticles, g-C3N4/Ag nanocomposite is more favorable for SPR absorption. A wide SPR absorption range is achieved due to the synergy between g-C3N4 and Ag nanoparticles, providing an improved SERS enhancement performance. Under the optimal experimental conditions by using RhB as probe molecule, an enhancement factor of 7.6×10 5 is achieved. Due to the electrostatic interaction and π-π interaction between the substrate and the probe molecules, the substrate can enrich in a large amount of cationic dyes, offering a detection of RhB. The g-C3N4/Ag SERS substrate can be used to detect RhB with a linear relationship from 1.0×10 –9 to 1.0×10 –6 mol/L and a detection limit as low as 0.39 nmol/L. In addition, the g-C3N4/Ag nanocomposite SERS substrate can also detect trace amounts of RhB molecules in the commercially available rainbow lollipops with a high sensitivity, and the recovery were 93.6%~95.04%. In summary, the g-C3N4/Ag nanocomposite is not only a SERS substrate with high sensitivity, uniformity and stability, but also can be used as a rapid trace detection method of Rhodamine B in real food and environment.
Chao Ma, , Jiawei Wu, , Lin Zhu, , Xiaoxia Han, , Weidong Ruan, , Wei Song, , Xu Wang, , Bing Zhao, . Trace Detection of Rhodamine B in Infant Candy by g-C3N4/Ag Nanocomposite as Surface-Enhanced Raman Scattering Substrate[J]. Acta Chimica Sinica, 2019 , 77(10) : 1024 -1030 . DOI: 10.6023/A19050191
[1] | Wang, C.; Cheng, F.; Wang, Y.; Gong, Z.; Fan, M . Anal. Methods 2014, 6, 7218. |
[2] | Vineis, P.; Pirastu, R . Cancer Causes Control. 1997, 346, 355. |
[3] | Oplatowska, M.; Elliott, C. T . Analyst 2011, 136, 2403. |
[4] | Qi, P.; Lin, Z.; Li, J.; Wang, C.; Meng, W.; Hong, H.; Zhang, X . Food Chem. 2014, 164, 98. |
[5] | Jiao, C.-L.; Wang, W.; Liu, J.; Yuan, Y.-X.; Xu, M.-M.; Yao, J.-L . Acta Chim. Sinica 2018, 76,, 526. |
[5] | ( 焦岑蕾, 王炜, 刘娇, 袁亚仙, 徐敏敏, 姚建林, 化学学报, 2018, 76, 526.) |
[6] | Hussain, M.; Sun, H.; Karim, S.; Nisar, A.; Khan, M.; ul Haq, A Iqbal, M Ahmad, M . J. Nanopart. Res. 2016, 18, 95. |
[7] | Alesso, M.; Bondioli, G.; Talío, M. C.; Luconi, M. O.; Fernández, L. P . Food Chem. 2012, 134, 513. |
[8] | Zhao, H.; Hasi, W.; Bao, L.; Liu, H.; Yang, Z.; Meng, L.; Sun, Y.; Wang, J.; Yang, L.; Tian, Z . Chin. J. Chem. 2017, 35, 1522. |
[9] | Kreno, L, E.; Greeneltch, N. G.; Farha, O. K.; Hupp, J. T.; Van Duyne, R. P . Analyst 2014, 139, 4073. |
[10] | Liu, J.; Sun, H.-L; Yin, L.; Yuan, Y.-X.; Xu, M.-M.; Yao, J.-L . Acta Chim. Sinica 2019, 77,, 257. |
[10] | ( 刘娇, 孙海龙, 印璐, 袁亚仙, 徐敏敏, 姚建林, 化学学报, 2019, 77, 257. ) |
[11] | Zhang, C.-J.; Zhang, J.; Lin, J.-R.; Xu, M.-M.; Yao, J.-L . Acta Chim. Sinica 2017, 75,, 860. |
[11] | ( 张晨杰, 张婧, 林洁茹, 徐敏敏, 姚建林, 化学学报, 2017, 75, 860. ) |
[12] | Jiang, J.; Zhu, L.; Zou, J.; Qu, Y.-L.; Zheng, A.; Tang, H. Carbon 2015, 87, 193. |
[13] | Xu, H.; Yan, J.; She, X.; Xu, L.; Xia, J.; Xu, Y.; Li, H. Nanoscale 2014, 6, 1406. |
[14] | Qu, L.; Wang, N.; Xu, H.; Wang, W.; Liu, Y.; Ku, L.; Li, H . Adv. Funct. Mater. 2017, 27, 1701714. |
[15] | Wang, Y. N.; Zhang, Y.; Zhang, W. S.; Xu, Z. R . Sens. Actuators, B 2018, 260, 400. |
[16] | Su, Y.-Y.; Peng, T.-H.; Xin, F.-F.; Li, D.; Fan, C.-H . Acta Chim. Sinica 2017, 75,, 1036. |
[16] | ( 苏莹莹, 彭天欢, 邢菲菲, 李迪, 樊春海, 化学学报, 2017, 75, 1036. ) |
[17] | Gao, Z.-G.; Zheng, T.-T.; Deng, J.; Li, X.-R.; Qu, Y.-Y.; Lu, Y.; Liu, T.-J . Acta Chim. Sinica 2017, 75,, 355. |
[17] | ( 高志刚, 郑婷婷, 邓九, 李晓瑞, 曲玥阳, 陆瑶, 刘婷娇, 化学学报, 2017, 75, 355. ) |
[18] | Xu, Q.; Cheng, B.; Yu, J.; Liu, G . Carbon 2017, 118, 241. |
[19] | Jin, J.; Zhu, S.; Song, Y.; Zhao, H.; Zhang, Z.; Guo, Y.; Zhao, B . ACS Appl. Mater. Interfaces 2016, 8, 27956. |
[20] | Jiang, J.; Zou, J.; Wee, A. T. S.; Zhang, W . Sci. Rep. 2016, 6, 34599. |
[21] | Bu, T.; Ma, X.; Zhao, B.; Song, W . Chem. Res. Chin. Univ. 2018, 34, 290. |
[22] | Zhai, C.; Peng, Y.-K.; Li, Y.-Y.; Xu, T.-F . Acta Chim. Sinica 2015, 73,, 1167. |
[22] | ( 翟晨, 彭彦昆, 李永玉, 徐田锋, 化学学报, 2015, 73, 1167. ) |
[23] | Fan, M.; Andrade, G. F. S.; Brolo, A. G. Anal. Chim. Acta 2011, 693, 7. |
[24] | Saleh, T. A.; Al-Shalalfeh, M.; Al-Saadi, A. Sens. Actuators, B 2018, 254, 1110. |
[25] | Nie, S.; Emory, S. R . Science 1997, 275, 1102. |
[26] | Ding, S.-Y.; Wu, D.-Y.; Yang, Z.-L.; Ren, B.; Xu, X.; Tian, Z.-Q . Chem. J. Chin. Univ. 2008, 29,, 2569. |
[26] | ( 丁松园, 吴德印, 杨志林, 任斌, 徐昕, 田中群 , 高等学校化学学报, 2008, 29, 2569. ) |
[27] | Zhang, J.; Li, X.; Sun, X.; Li, Y . J. Phys. Chem. B 2005, 109, 12544. |
[28] | Li, K. Y.; Fang, Z. L.; Xiong, S.; Luo, J . Mater. Technol. 2017, 32, 391. |
[29] | Wang, M.; Yan, X.; Wei, D.-Q.; Liang, L.-J.; Wang, Y.-P . Acta Chim. Sinica 2019, 77,, 184. |
[29] | ( 王猛, 闫昕, 韦德泉, 梁兰菊, 王岳平, 化学学报, 2019, 77, 184. ) |
[30] | Jiang, J.; Zhu, L.; Zou, J.; Qu, Y.-L.; Zheng, A.; Tang, H. Carbon 2015, 87, 193. |
[31] | Zhang, L.; Li, P.; Luo, L.; Bu, X.; Wang, X.; Zhao, B.; Tian, Y . Appl. Spectrosc. 2017, 71, 2395. |
[32] | Zuo, F.-T.; Xu, W.; Zhao, A.-W . Acta Chim. Sinica 2019, 77,, 379. |
[32] | ( 左方涛, 徐威, 赵爱武, 化学学报, 2019, 77, 379. ) |
[33] | Tian, H.; Zhang, N.; Tong, L.; Zhang, J . Small Methods 2017, 1, 1700126. |
[34] | López, Arbeloa. F.; López, Arbeloa. T.; Tapia, Estévez. M. J.; López, Arbeloa, I. J. Phys. Chem. 1991, 95, 2203. |
[35] | Lu, Q.-N.; Dorn, J.-M.; Berry, M.-T.; Jiang, C., Lin, C.; May, P.-S . J. Colloid Interface Sci. 2011, 356, 151. |
[36] | Wang, H.-B.; . Sci. Technol. Food Ind. 2019, 11, 1002. |
[37] | Lee, P. C.; Mei, S.-D. J. Phys. Chem. 1982, 86, 3391. |
/
〈 |
|
〉 |