Review

Recent Advances in Catalytic Asymmetric Synthesis of P-Chiral Phosphine Oxides

  • Zhu Ren-Yi ,
  • Liao Kui ,
  • Yu Jin-Sheng ,
  • Zhou Jian
Expand
  • a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062;
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032

Received date: 2020-01-01

  Online published: 2020-02-24

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21725203, 21901074).

Abstract

P-Chiral phosphine oxides are a class of privileged structures, which have important applications in the field of medicinal chemistry, organic synthesis, life and material science. Recent years have witnessed significant progress in the catalytic asymmetric construction of such scaffolds. These advances are summarized in this review according to the following three major strategies:desymmetrization of prochiral tertiary phosphine oxides, (dynamic) kinetic resolution of tertiary phosphine oxides, and catalytic asymmetric reactions involving secondary phosphine oxides, and discusses the possible reaction mechanism, the advantage and disadvantage of each type of reactions, which would provide reference and inspiration for the researchers engaged in organic synthesis and organic phosphorus chemistry.

Cite this article

Zhu Ren-Yi , Liao Kui , Yu Jin-Sheng , Zhou Jian . Recent Advances in Catalytic Asymmetric Synthesis of P-Chiral Phosphine Oxides[J]. Acta Chimica Sinica, 2020 , 78(3) : 193 -216 . DOI: 10.6023/A20010002

References

[1] (a) Dutartre, M.; Bayardon, J.; Jugé, S. Chem. Soc. Rev. 2016, 45, 5771.
(b) Macia, E. Chem. Soc. Rev. 2005, 34, 691.
[2] (a) Kazemi, M.; Tahmasbi, A. M.; Valizadeh, R.; Naserian, A. A.; Soni, A. Agric. Sci. Res. J. 2012, 2, 512.
(b) Lamberth, C. Tetrahedron 2010, 66, 7239.
[3] De Clercq, E. Clin. Microbiol. Rev. 2003, 16, 569.
[4] (a) Akiyama, T. Chem. Rev. 2007, 107, 5744.
(b) Milo, A.; Neel, A. J.; Toste, F. D.; Sigman, M. S. Science 2015, 347, 737.
[5] Duffy, M. P.; Delaunay, W.; Bouit, P.-A.; Hissler, M. Chem. Soc. Rev. 2016, 45, 5296.
[6] Ohmaru, Y.; Sato, N.; Mizutani, M.; Kotani, S.; Sugiura, M.; Nakajima, M. Org. Biomol. Chem. 2012, 10, 4562.
[7] Takaya, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kumobayashi, H.; Taketomi, T.; Akutagawa, S.; Noyori, R. J. Org. Chem. 1986, 51, 629.
[8] Xu, B.; Zhu, S.-F.; Xie, X.-L, Shen, J.-J.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2011, 50, 11483.
[9] Pye, P. J.; Rossen, K.; Reamer, R. A.; Tsou, N. N.; Volante, R. P.; Reider, P. J. J. Am. Chem. Soc. 1997, 119, 6207.
[10] Schulze, C. J.; Navarro, G.; Ebert, D.; DeRisi, J.; Linington, R. G. J. Org. Chem. 2015, 80, 1312.
[11] Cholongitas, E.; Papatheodoridis, G. V. Ann. Gastroenterol. 2014, 27, 331.
[12] Clarion, L.; Jacquard, C.; Sainte-Catherine, O.; Loiseau, S.; Filippini, D.; Hirlemann, M.-H.; Volle, J.-N.; Virieux, D.; Lecouvrey, M.; Pirat, J.-L.; Bakalara, N. J. Med. Chem. 2012, 55, 2196.
[13] (a) Baraniak, J.; Kinas, R. W.; Lesiak, K.; Stec, W. J. J. Chem. Soc. 1979, 940.
(b) Dostmann, W. R. G.; Taylor, S. S.; Genieser, H.-G.; Jastorff, B.; Døskeland, S. O.; Øgreid, D. J. Biol. Chem. 1990, 265, 10484.
[14] Matsukawa, M.; Sugama, H.; Imamoto, T. Tetrahedron Lett. 2000, 41, 6461.
[15] (a) Iseki, K.; Kuroki, Y.; Takahashi, M.; Kobayashi, Y. Tetrahedron Lett. 1996, 37, 5149.
(b) Iseki, K.; Kuroki, Y.; Takahashi, M.; Kishimoto, S. Tetrahedron 1997, 53, 3513.
[16] Xu, G.; Senanayake, C. H.; Tang, W. Acc. Chem. Res. 2019, 52, 1101.
[17] Selected examples using P-chiral phosphines as ligands:(a) Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.; Weinkauff, D. J. J. Am. Chem. Soc. 1977, 99, 5946.
(b) Gridnev, I. D.; Higashi, N.; Asakura, K.; Imamoto, T. J. Am. Chem. Soc. 2000, 122, 7183.
(c) Tang, W.; Zhang, X. Angew. Chem., Int. Ed. 2002, 41, 1612.
(d) Taylor, A. M.; Altman, R. A.; Buchwald S. L. J. Am. Chem. Soc. 2009, 131, 9900.
(e) Imamoto, T.; Tamura, K.; Zhang, Z.; Horiuchi, Y.; Sugiya, M.; Yoshida, K.; Yanagisawa, A.; Gridnev, I. D. J. Am. Chem. Soc. 2012, 134, 1754.
(f) Liu, G.; Liu, X.; Cai, Z.; Jiao, G.; Xu, G.; Tang, W. Angew. Chem., Int. Ed. 2013, 52, 4235. Selected examples using P-chiral phosphine as organocatalysts:
(g) Sampath, M.; Loh, T.-P. Chem. Sci. 2010, 1, 739.
(h) Rémond, E.; Bayardon, J.; Takizawa, S.; Rousselin, Y.; Sasai; H.; Jugé, S. Org. Lett. 2013, 15, 1870.
(i) Takizawa, S.; Rémond, E.; Arteaga, F.; Yoshida, Y.; Sridharan, V.; Bayardon, J.; Jugé, S.; Sasai, H. Chem. Commun. 2013, 49, 8392.
(j) Henry, C. E.; Xu, Q.-H.; Fan, Y.-C.; Martin, T. J.; Belding, L.; Dudding, T.; Kwon, O. J. Am. Chem. Soc. 2014, 136, 11890.
[18] (a) Liu, S.; Li, Y.-M.; Wang, D.; Wei, R.; Miao, Z.-W. Chin. J. Org. Chem. 2018, 38, 341(in Chinese). (刘双, 李玉明, 王典, 魏榕, 苗志伟, 有机化学, 2018, 38, 341.)
(b) Cui, Y.-M.; Lin, Y.; Xu. L.-W. Coord. Chem. Rev. 2017, 330, 37.
(c) Li, Z.; Duan, W.-L. Chin. J. Org. Chem. 2016, 36, 1805(in Chinese). (李振, 段伟良, 有机化学, 2016, 36, 1805.)
(d) Harvey, J. S.; Gouverneur, V. Chem. Commun. 2010, 46, 7477.
(e) Glueck, D. S. Chem. Eur. J. 2008, 14, 7108.
[19] Selected examples for chiral resolution:see ref. 17a, and (a) Korpiun, O.; Lewis, R. A.; Chickos, J.; Mislow, K. J. Am. Chem. Soc. 1968, 90, 4842. For chiral auxiliaries:
(b) Berger, O.; Montchamp, J.-L. Angew. Chem., Int. Ed. 2013, 52, 11377.
(c) Han, Z. S.; Goyal, N.; Herbage, M. A.; Sieber, J. D.; Qu, B.; Xu,Y.; Li, Z.; Reeves, J. T.; Desrosiers, J.-N.; Ma, S.; Grinberg, N.; Lee, H.;Mangunuru, H. P. R.; Zhang, Y.; Krishnamurthy, D.; Lu, B. Z.; Song, J. J.;Wang, G.; Senanayake, C. H. J. Am. Chem. Soc. 2013, 135, 2474.
(d) Gwon, D.; Lee, D.; Kim, J.; Park, S.; Chang, S. Chem. Eur. J. 2014, 20, 12421. For asymmetric oxidation of tertiary phosphines:
(e) Bergin, E.; O'Connor, C. T.; Robinson, S. B.; McGarrigle, E. M.; O'Mahony, C. P.; Gilheany, D. G. J. Am. Chem. Soc. 2007, 129, 9566.
(f) Rajendran, K. V.; Kennedy, L.; Gilheany, D. G. Eur. J. Org. Chem. 2010, 5642.
(g) Nikitin, K.; Rajendran, K. V.; Müller-Bunz, H.; Gilheany, D. G. Angew. Chem., Int. Ed. 2014, 53, 1906.
[20] (a) Zeng, X.-P.; Cao, Z.-Y.; Wang, Y.-H.; Zhou, F.; Zhou, J. Chem. Rev. 2016, 116, 7330.
(b) Petersen, K. S. Tetrahedron Lett. 2015, 56, 6523.
(c) Willis, M. C. J. Chem. Soc., Perkin Trans. 11999, 1765.
[21] Nishida, G.; Noguchi, K.; Hirano, M.; Tanaka, K. Angew. Chem., Int. Ed. 2008, 47, 3410.
[22] Zheng, Y.; Guo, L.; Zi, W. Org. Lett. 2018, 20, 7039.
[23] Zhang, Y.; Zhang, F.; Chen, L.; Xu, J.; Liu, X.; Feng, X. ACS Catal. 2019, 9, 4834.
[24] Zhu, R. Y.; Chen, L.; Hu, X. S.; Zhou, F.; Zhou, J. Chem. Sci. 2020, 11, 97.
[25] (a) Meng, J.-C.; Fokin, V. V.; Finn, M. G. Tetrahedron Lett. 2005, 46, 4543.
(b) Stephenson, G. R.; Buttress, J. P.; Deschamps, D.; Lancelot, M.; Martin, J. P.; Sheldon, A. I. G.; Alayrac, C.; Gau-mont, A.-C.; Page, P. C. B. Synlett 2013, 24, 2723.
(c) Song, T.; Li, L.; Zhou, W.; Zheng, Z.-J.; Deng, Y.; Xu, Z.; Xu, L.-W. Chem. Eur. J. 2015, 21, 554.
(d) Chen, M.-Y.; Song, T.; Zheng, Z.-J.; Xu, Z.; Cui, Y.-M.; Xu, L.-W. RSC Adv. 2016, 6, 58698.
(e) Chen, M.-Y.; Xu, Z.; Chen, L.; Song, T.; Zheng, Z.-J.; Cao, J.; Cui, Y.-M., Xu, L.-W. ChemCatChem 2018, 10, 280. For achiral version:
(f) Rodionov, V. O.; Fokin, V. V.; Finn, M. G. Angew. Chem., Int. Ed. 2005, 44, 2210.
[26] (a) Worrell, B. T.; Malik, J. A.; Fokin, V. V. Science 2013, 340, 457.
(b) Díez, J.; Gamasa, M. P.; Panera, M. Inorg. Chem. 2006, 45, 10043.
[27] Zhou, F.; Tan, C.; Tang, J.; Zhang, Y.-Y.; Gao, W.-M.; Wu, H.-H.; Yu, Y.-H.; Zhou, J. J. Am. Chem. Soc. 2013, 135, 10994.
[28] (a) Osako, T.; Uozumi, Y. Org. Lett. 2014, 16, 5866.
(b) Osako, T.; Uozumi, Y. Synlett 2015, 26, 1475.
[29] For reviews:(a) Ren, Y.; Baumgartner, T. Dalton Trans. 2012, 41, 7792.
(b) Matano, Y.; Imahori, H. Org. Biomol. Chem. 2009, 7, 1258. For recent examples:
(c) Stolar, M.; Borau-Garcia, J.; Toonen, M.; Baumgartner, T. J. Am. Chem. Soc. 2015, 137, 3366.
(d) Yamaguchi, E.; Wang, C.; Fukazawa, A.; Taki, M.; Sato, Y.; Sasaki, T.; Ueda, M.; Sasaki, N.; Higashiyama, T.; Yamaguchi, S. Angew. Chem., Int. Ed. 2015, 54, 4539.
(e) Reus, C.; Stolar, M.; Vanderkley, J.; Nebauer, J.; Baumgartner, T. J. Am. Chem. Soc. 2015, 137, 11710.
[30] Tahara, Y.-K.; Sato, T.; Matsubara, R.; Kanyiva, K. S.; Shibata, T. Heterocycles 2016, 93, 685.
[31] Harvey, J. S.; Malcolmson, S. J.; Dunne, K. S.; Meek, S. J.; Thompson, A. L.; Schrock, R. R.; Hoveyda, A. H.; Gouverneur, V. Angew. Chem., Int. Ed. 2009, 48, 762.
[32] Wang, Z.; Hayashi. T. Angew. Chem., Int. Ed. 2018, 57, 1702.
[33] For selected reviews on C-H bond functionalization, see:(a) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826.
(b) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
(c) Xu, L.-M.; Li, B.-J.; Yang, Z.; Shi, Z.-J. Chem. Soc. Rev. 2010, 39, 712.
(d) Albrecht, M. Chem. Rev. 2010, 110, 576.
(e) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651.
(f) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Chem. Rev. 2017, 117, 8908.
[34] Du, Z.-J.; Guan, J.; Wu, G.-J.; Xu, P.; Gao, L.-X.; Han, F.-S. J. Am. Chem. Soc. 2015, 137, 632.
[35] Guan, J.; Wu, G.-J.; Han, F.-S. Chem. Eur. J. 2014, 20, 3301.
[36] (a) Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 4882.
(b) Shi, B.-F.; Zhang, Y.-H.; Lam, J.-K.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460.
(c) Yang, Y.-F.; Hong, X.; Yu, J.-Q.; Houk, K. N. Acc. Chem. Res. 2017, 50, 2853.
[37] Sun, Y.; Cramer, N. Angew. Chem., Int. Ed. 2017, 56, 364.
[38] Gwon, D.; Park, S.; Chang, S. Tetrahedron 2015, 71, 4504.
[39] Jang, Y.-S.; Dieckmann, M.; Cramer, N. Angew. Chem., Int. Ed. 2017, 56, 15088.
[40] Jang, Y.-S.; Woźniak, Ł.; Pedroni, J.; Cramer, N. Angew. Chem., Int. Ed. 2018, 57, 12901.
[41] Lin, Z.-Q.; Wang, W.-Z.; Yan, S.-B.; Duan, W.-L. Angew. Chem., Int. Ed. 2015, 54, 6265.
[42] Liu, L.; Zhang, A.-A.; Wang, Y.; Zhang, F.; Zuo, Z.; Zhao, W.-X.; Feng, C.-L.; Ma, W. Org. Lett. 2015, 17, 2046.
[43] Lin, Y.; Ma, W.-Y.; Sun, Q.-Y.; Cui, Y.-M.; Xu, L.-W. Synlett 2017, 28, 1432.
[44] Li, Z.; Lin, Z.-Q.; Yan, C.-G.; Duan, W.-L. Organometallics 2019, 38, 3916.
[45] Xu, G. Q.; Li, M. H.; Wang, S. L.; Tang, W. J. Org. Chem. Front. 2015, 2, 1342.
[46] Huang, Z.; Huang, X.; Li, B.; Mou, C.; Yang, S.; Song, B.-A.; Chi, Y. R. J. Am. Chem. Soc. 2016, 138, 7524.
[47] Yang, G.-H.; Li, Y.; Li, X.; Cheng, J.-P. Chem. Sci. 2019, 10, 4322.
[48] Toda, Y.; Pink, M.; Johnston, J. N. J. Am. Chem. Soc. 2014, 136, 14734.
[49] Dobish, M. C.; Johnston, J. N. J. Am. Chem. Soc. 2011, 134, 6068.
[50] Trost, B. M.; Spohr, S. M.; Rolka, A. B.; Kalnmals, C. A. J. Am. Chem. Soc. 2019, 141, 14098.
[51] Liu, S.; Zhang, Z. F.; Xie, F.; Butt, N. A.; Sun, L.; Zhang, W. B. Tetrahedron Asymmetry 2012, 23, 329.
[52] Sun, Y.; Cramer, N. Chem. Sci. 2018, 9, 2981.
[53] Lim, K. M.-H.; Hayashi, T. J. Am. Chem. Soc. 2017, 139, 8122.
[54] Emmick, T. L.; Letsinger, R. L. J. Am. Chem. Soc. 1968, 90, 3459.
[55] Fu, X.; Loh, W.-T.; Zhang, Y.; Chen, T.; Ma, T.; Liu, H.; Wang, J.; Tan, C.-H. Angew. Chem., Int. Ed. 2009, 48, 7387.
[56] Xie, P. Z.; Guo, L.; Xu, L. L.; Loh, T.-P. Chem. Asian J. 2016, 11, 1353.
[57] (a) Zhang, H.; Sun, Y.-M.; Yao, L.; Ji, S.-Y.; Zhao, C.-Q.; Han, L.-B. Chem. Asian J. 2014, 9, 1329.
(b) Wang, J.-P.; Nie, S.-Z.; Zhou, Z.-Y.; Ye, J.-J.; Wen, J.-H.; Zhao, C.-Q. J. Org. Chem. 2016, 81, 7644.
[58] Du, J.-Y.; Ma, Y.-H.; Yuan, R.-Q.; Xin, N. N.; Nie, S.-Z.; Ma, C.-L.; Li, C.-Z.; Zhao, C.-Q. Org. Lett. 2018, 20, 477.
[59] Beaud, R.; Phipps, R. J.; Gaunt, M. J. J. Am. Chem. Soc. 2016, 138, 13183.
[60] Zhang, Y.; He, H.; Wang, Q. Y.; Cai, Q. Tetrahedron Lett. 2016, 57, 5308.
[61] Dai, Q.; Li, W.-B.; Li, Z.-M.; Zhang, J.-L. J. Am. Chem. Soc. 2019, 141, 20556.
[62] Liu, X.-T.; Zhang, Y.-Q.; Han, X.-Y.; Sun, S.-P.; Zhang, Q.-W. J. Am. Chem. Soc. 2019, 141, 16584.
Outlines

/