Communication

Module Replacement of Gold Nanoparticles by a Pseudo-AGR Process

  • Jin Fengming ,
  • Dong Hongwei ,
  • Zhao Yan ,
  • Zhuang Shengli ,
  • Liao Lingwen ,
  • Yan Nan ,
  • Gu Wanmiao ,
  • Zha Jun ,
  • Yuan Jinyun ,
  • Li Jin ,
  • Deng Haiteng ,
  • Gan Zibao ,
  • Yang Jinlong ,
  • Wu Zhikun
Expand
  • a Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China;
    b University of Science and Technology of China, Hefei 230026, China;
    c Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
    d Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China;
    e Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China;
    f MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China

Received date: 2020-04-30

  Online published: 2020-05-07

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21925303, 21971246, 21829501, 21905284, 21771186, 21603234, 21222301, 21171170, 21528303), China Postdoctoral Science Foundation (Y94G4E356B), CASHIPS Director's Fund (BJPY2019A02), Key Program of 13th five-year plan, CASHIPS (KP-2017-16), CAS/SAFEA International Partnership Program for Creative Research Teams and Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (2017FXCX002).

Abstract

Precisely modulating the structure of nanoparticles in a controlled manner is still a challenging and inspiring topic. Although the single or few-metal atom tailoring of gold nanoparticles has been reported, local structural replacement involving over three net metal atoms (module replacement, MR) has not been hitherto achieved. Herein, we report the synthesis of cyclohexanethiolated metal nanoclusters (NCs) Au48(CHT)26 and their MR by a so-called pseudo-anti-galvanic reaction (AGR) process. The MR product Au37(CHT)23 shares a similar Au31(CHT)12 unit with its predecessor Au48(CHT)26; however, it differs from its predecessor in the remaining section (Au6(CHT)11 vs. Au16(CHT)14), as revealed by single-crystal X-ray crystallography (SCXC). Interestingly, the MR inhibits the photothermy but enhances the emission of Au48(CHT)26 NCs, which might endow the as-obtained NC better potential for bi(multiple)-functional application. The counter effects of the MR on the emission and photothermy indicate that photoluminescence and photothermy can be at least partly converted into each other, which has some important implications for the understanding of their interaction.

Cite this article

Jin Fengming , Dong Hongwei , Zhao Yan , Zhuang Shengli , Liao Lingwen , Yan Nan , Gu Wanmiao , Zha Jun , Yuan Jinyun , Li Jin , Deng Haiteng , Gan Zibao , Yang Jinlong , Wu Zhikun . Module Replacement of Gold Nanoparticles by a Pseudo-AGR Process[J]. Acta Chimica Sinica, 2020 , 78(5) : 407 -411 . DOI: 10.6023/A20040134

References

[1] Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Science 2007, 318, 430.
[2] Negishi, Y.; Chaki, N. K.; Shichibu, Y.; Whetten, R. L.; Tsukuda, T. J. Am. Chem. Soc. 2007, 129, 11322.
[3] Sánchez-Castillo, A.; Noguez, C.; Garzón, I. L. J. Am. Chem. Soc. 2010, 132, 1504.
[4] Parker, J. F.; Fields-Zinna, C. A.; Murray, R. W. Acc. Chem. Res. 2010, 43, 1289.
[5] Desireddy, A.; Conn, B. E.; Guo, J.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U.; Bigioni, T. P. Nature 2013, 501, 399.
[6] Yamazoe, S.; Koyasu, K.; Tsukuda, T. Acc. Chem. Res. 2014, 47, 816.
[7] Mathew, A.; Pradeep, T. Part. Part. Syst. Charact. 2014, 31, 1017.
[8] Alhilaly, M. J.; Bootharaju, M. S.; Joshi, C. P.; Besong, T. M.; Emwas, A. H.; Juarez-Mosqueda, R.; Kaappa, S.; Malola, S.; Adil, K.; Shkurenko, A.; Hakkinen, H.; Eddaoudi, M.; Bakr, O. M. J. Am. Chem. Soc. 2016, 138, 14727.
[9] Zhao, Y.; Zhuang, S.; Liao, L.; Wang, C.; Xia, N.; Gan, Z.; Gu, W.; Li, J.; Deng, H.; Wu, Z. J. Am. Chem. Soc. 2020, 142, 973.
[10] Zhu, M.; Li, M.; Yao, C.; Xia, N.; Zhao, Y.; Yan, N.; Liao, L.; Wu, Z. Acta Phys.-Chim. Sin. 2018, 34, 792.
[11] Qian, H.; Zhu, Y.; Jin, R. ACS Nano 2009, 3, 3795.
[12] Jin, R.; Qian, H.; Wu, Z.; Zhu, Y.; Zhu, M.; Mohanty, A.; Garg, N. J. Phys. Chem. Lett. 2010, 1, 2903.
[13] Wu, Z.; MacDonald, M. A.; Chen, J.; Zhang, P.; Jin, R. J. Am. Chem. Soc. 2011, 133, 9670.
[14] Knoppe, S.; Boudon, J.; Dolamic, I.; Dass, A.; Bürgi, T. Anal. Chem. 2011, 83, 5056.
[15] Qian, H.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. J. Am. Chem. Soc. 2010, 132, 8280.
[16] Yang, H.; Wang, Y.; Huang, H.; Gell, L.; Lehtovaara, L.; Malola, S.; Häkkinen, H.; Zheng, N. Nat. Commun. 2013, 4, 2422.
[17] Chen, J.; Zhang, Q. F.; Williard, P. G.; Wang, L. S. Inorg. Chem. 2014, 53, 3932.
[18] Tian, S.; Li, Y.-Z.; Li, M.-B.; Yuan, J.; Yang, J.; Wu, Z.; Jin, R. Nat. Commun. 2015, 6, 8667.
[19] Dass, A.; Theivendran, S.; Nimmala, P. R.; Kumara, C.; Jupally, V. R.; Fortunelli, A.; Sementa, L.; Barcaro, G.; Zuo, X.; Noll, B. C. J. Am. Chem. Soc. 2015, 137, 4610.
[20] Zeng, C.; Liu, C.; Chen, Y.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2016, 138, 8710.
[21] Wan, X.-K.; Cheng, X.-L.; Tang, Q.; Han, Y.-Z.; Hu, G.; Jiang, D. E.; Wang, Q.-M. J. Am. Chem. Soc. 2017, 139, 9451.
[22] Zhang, S.-S.; Feng, L.; Senanayake, R. D.; Aikens, C. M.; Wang, X.-P.; Zhao, Q.-Q.; Tung, C.-H.; Sun, D. Chem. Sci. 2018, 9, 1251.
[23] Chen, S.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R. W.; Schaaff, T. G.; Khoury, J. T.; Alvarez, M. M.; Whetten, R. L. Science 1998, 280, 2098.
[24] Tsunoyama, H.; Ichikuni, N.; Sakurai, H.; Tsukuda, T. J. Am. Chem. Soc. 2009, 131, 7086.
[25] Gao, Y.; Shao, N.; Pei, Y.; Zeng, X. C. Nano Lett. 2010, 10, 1055.
[26] Luo, Z.; Zheng, K.; Xie, J. Chem. Commun. 2014, 50, 5143.
[27] Azubel, M.; Koivisto, J.; Malola, S.; Bushnell, D.; Hura, G. L.; Koh, A. L.; Tsunoyama, H.; Tsukuda, T.; Pettersson, M.; Häkkinen, H.; Kornberg, R. D. Science 2014, 345, 909.
[28] Li, M.; Tian, S.; Wu, Z. Chin. J. Chem. 2017, 35, 567.
[29] Zeng, C.; Liu, C.; Chen, Y.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2014, 136, 11922.
[30] Song, Y.; Abroshan, H.; Chai, J.; Kang, X.; Kim, H.; Zhu, M.; Jin, R. Chem. Mater. 2017, 29, 3055.
[31] Yao, C.; Tian, S.; Liao, L.; Liu, X.; Xia, N.; Yan, N.; Gan, Z.; Wu, Z. Nanoscale 2015, 7, 16200.
[32] Zeng, C.; Li, T.; Das, A.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2013, 135, 10011.
[33] Xia, N.; Gan, Z.; Liao, L.; Zhuang, S.; Wu, Z. Chem. Commun. 2017, 53, 11646.
[34] Dainese, T.; Antonello, S.; Bogialli, S.; Fei, W.; Venzo, A.; Maran, F. ACS Nano 2018, 12, 7057.
[35] Li, Q.; Luo, T.; Taylor, M. G.; Wang, S.; Zhu, X.; Song, Y.; Mpourmpakis, G.; Rosi, N. L.; Jin, R. Sci. Adv. 2017, 3, e1603193.
[36] Wu, Z. Acta Phys.-Chim. Sin. 2017, 33, 1930(in Chinese). (伍志鲲, 物理化学学报, 2017, 33, 1930.)
[37] Wu, Z. Angew. Chem. Int. Ed. 2012, 51, 2934.
[38] Tian, S.; Yao, C.; Liao, L.; Xia, N.; Wu, Z. Chem. Commun. 2015, 51, 11773.
[39] Gan, Z.; Xia, N.; Wu, Z. Acc. Chem. Res. 2018, 51, 2774.
[40] Yao, C.; Lin, Y.; Yuan, J.; Liao, L.; Zhu, M.; Weng, L.; Yang, J.; Wu, Z. J. Am. Chem. Soc. 2015, 137, 15350.
[41] Yao, C.; Lin, Y.; Yuan, J.; Liao, L.; Zhu, M.; Weng, L.; Yang, J.; Wu, Z. J. Am. Chem. Soc. 2015, 137, 15350.
[42] Liao, L.; Zhou, S.; Dai, Y.; Liu, L.; Yao, C.; Fu, C.; Yang, J.; Wu, Z. J. Am. Chem. Soc. 2015, 137, 9511.
[43] Zhu, M.; Wang, P.; Yan, N.; Qi, C.; He, L.; Zhao, Y.; Xia, N.; Yao, C.; Li, J.; Deng, H.; Zhu, Y.; Pei, Y.; Wu, Z. Angew. Chem. Int. Ed. 2018, 57, 4500.
[44] Zhang, W.; Zhuang, S.; Liao, L.; Dong, H.; Xia, N.; Li, J.; Deng, H.; Wu, Z. Inorg. Chem. 2019, 58, 5388.
[45] Gan, Z.; Chen, J.; Liao, L.; Zhang, H.; Wu, Z. J. Phys. Chem. Lett. 2018, 9, 204.
[46] Das, A.; Liu, C.; Byun, H. Y.; Nobusada, K.; Zhao, S.; Rosi, N.; Jin, R. Angew. Chem. Int. Ed. 2015, 54, 3140.
[47] Das, A.; Li, T.; Nobusada, K.; Zeng, C.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2013, 135, 18264.
[48] Chen, Y.; Liu, C.; Tang, Q.; Zeng, C.; Higaki, T.; Das, A.; Jiang, D. E.; Rosi, N. L.; Jin, R. J. Am. Chem. Soc. 2016, 138, 1482.
[49] Dong, H.; Liao, L.; Zhuang, S.; Yao, C.; Chen, J.; Tian, S.; Zhu, M.; Liu, X.; Li, L.; Wu, Z. Nanoscale 2017, 9, 3742.
[50] Dong, H.; Liao, L.; Wu, Z. J. Phys. Chem. Lett. 2017, 8, 5338.
[51] Zhuang, S.; Liao, L.; Yuan, J.; Wang, C.; Zhao, Y.; Xia, N.; Gan, Z.; Gu, W.; Li, J.; Deng, H.; Yang, J.; Wu, Z. Angew. Chem. Int. Ed. 2018, 57, 15450.
[52] Liao, L.; Zhuang, S.; Wang, P.; Xu, Y.; Yan, N.; Dong, H.; Wang, C.; Zhao, Y.; Xia, N.; Li, J.; Deng, H.; Pei, Y.; Tian, S. K.; Wu, Z. Angew. Chem. Int. Ed. 2017, 56, 12644.
[53] Wu, Z.; Jin, R. Nano Lett. 2010, 10, 2568.
[54] Yu, Y.; Luo, Z.; Chevrier, D. M.; Leong, D. T.; Zhang, P.; Jiang, D. E.; Xie, J. J. Am. Chem. Soc. 2014, 136, 1246.
[55] Wang, S.; Zhu, X.; Cao, T.; Zhu, M. Nanoscale 2014, 6, 5777.
[56] Pyo, K.; Thanthirige, V. D.; Kwak, K.; Pandurangan, P.; Ramakrishna, G.; Lee, D. J. Am. Chem. Soc. 2015, 137, 8244.
[57] Gan, Z.; Lin, Y.; Luo, L.; Han, G.; Liu, W.; Liu, Z.; Yao, C.; Weng, L.; Liao, L.; Chen, J.; Liu, X.; Luo, Y.; Wang, C.; Wei, S.; Wu, Z. Angew. Chem. Int. Ed. 2016, 55, 11567.
[58] Goswami, N.; Yao, Q.; Luo, Z.; Li, J.; Chen, T.; Xie, J. J. Phys. Chem. Lett. 2016, 7, 962.
[59] Sugiuchi, M.; Maeba, J.; Okubo, N.; Iwamura, M.; Nozaki, K.; Konishi, K. J. Am. Chem. Soc. 2017, 139, 17731.
[60] Gan, Z.; Chen, J.; Wang, J.; Wang, C.; Li, M. B.; Yao, C.; Zhuang, S.; Xu, A.; Li, L.; Wu, Z. Nat. Commun. 2017, 8, 14739.
[61] Zhuang, S.; Liao, L.; Yuan, J.; Xia, N.; Zhao, Y.; Wang, C.; Gan, Z.; Yan, N.; He, L.; Li, J.; Deng, H.; Guan, Z.; Yang, J.; Wu, Z. Angew. Chem. Int. Ed. 2019, 58, 4510.
[62] Wang, P. Environ. Sci.:Nano 2018, 5, 1078.
[63] Jin, Y.; Chang, J.; Shi, Y.; Shi, L.; Hong, S.; Wang, P. J. Mater. Chem. A 2018, 6, 7942.
[64] Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. J. Am. Chem. Soc. 2006, 128, 2115.
[65] Huang, X.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Lasers Med. Sci. 2008, 23, 217.
[66] Chen, J.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M.; Gidding, M.; Welch, M. J.; Xia, Y. Small 2010, 6, 811.
[67] Tang, S.; Huang, X.; Zheng, N. Chem. Commun. 2011, 47, 3948.
[68] Tang, S.; Chen, M.; Zheng, N. Nano Res. 2014, 8, 165.
[69] Abadeer, N. S.; Murphy, C. J. J. Phys. Chem. C 2016, 120, 4691.
[70] Liu, Y.; Yang, Z.; Huang, X.; Yu, G.; Wang, S.; Zhou, Z.; Shen, Z.; Fan, W.; Liu, Y.; Davisson, M.; Kalish, H.; Niu, G.; Nie, Z.; Chen, X. ACS Nano 2018, 12, 8129.
[71] Lu, B.; Chen, Y.; Li, P.; Wang, B.; Mullen, K.; Yin, M. Nat. Commun. 2019, 10, 767.
Outlines

/