Account

Carbon-Enriched meso-Entropy Materials: from Theory to Cases

  • Feng Boxu ,
  • Zhuang Xiaodong
Expand
  • The meso-Entropy Matter Lab, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2020-05-15

  Online published: 2020-06-29

Supported by

Project supported by the National Natural Science Foundation of China Excellent Young Scientists Fund (No. 51722304), National Key Research and Development Program of China (No. 2017YFE9134000), the National Natural Science Foundation of China (Nos. 51973114, 21720102002, 51811530013), Shanghai Pujiang Talent Program (No. 18PJ1406100), Science and Technology Commission of Shanghai Municipality (No. 19JC412600).

Abstract

Carbon-enriched materials, including carbon allotropes, polycyclic aromatic hydrocarbons, polymers, frameworks, etc., are rising as stars in functional materials field. Large amount of reported work focused on development of new structures with typical features for novel applications, and has long ignored the intrinsic relationship between similar structures. The superficial relationships of those carbon-enriched materials in textbook, e.g., isomers, allotropes and topological defects, are no longer enough for fundamental understanding the structure-property relationship study due to more and more carbon-enriched materials have been developed. Such disadvantage has long hindered development of new materials based on well-established material systems. In this work, meso-entropy concept is proposed for understanding and development of different kinds of carbon-enriched materials by comparing their relative entropy values. Based on theoretical models and case-to-case discussion, meso-entropy concept has been found compatible with the concept of isomers, allotropes and topological defects in carbon-enriched materials. From now on, hopefully, the meso-entropy defined relationship for carbon-enriched materials will be no longer staying at the geometric level, and provide new thinking development of new carbon-enriched materials and other meso-entropy materials.

Cite this article

Feng Boxu , Zhuang Xiaodong . Carbon-Enriched meso-Entropy Materials: from Theory to Cases[J]. Acta Chimica Sinica, 2020 , 78(9) : 833 -847 . DOI: 10.6023/A20050167

References

[1] de Gennes, P. G. Angew. Chem., Int. Ed. 1992, 31, 842.
[2] Cowie, J. M. G.; Arrighi, V. Polymers:Chemistry and Physics of Modern Materials, CRC press, New York, 2007.
[3] Smalley, R. E. Angew. Chem., Int. Ed. 1997, 36, 1594.
[4] Heeger, A. Chem. Soc. Rev. 2010, 39, 2352.
[5] Geim, A.; Novoselov, K. Nat. Phys. 2010, 6, 836.
[6] Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A. Science 2002, 297, 787.
[7] Yang, N.; Yu, S.; Macpherson, J. V.; Einaga, Y.; Zhao, H.; Zhao, G.; Swain, G. M.; Jiang, X. Chem. Soc. Rev. 2019, 48, 157.
[8] Wu, J.; Xu, F.; Li, S.; Ma, P.; Zhang, X.; Liu, Q.; Fu, R.; Wu, D. Adv. Mater 2019, 31, 1802922.
[9] Scott, L. T. Chem. Soc. Rev. 2015, 44, 6464.
[10] Dodiuk, H.; Goodman, S. H. Handbook of Thermoset Plastics:1. Introduction, William Andrew, Boston, 2013.
[11] Sakamoto, J.; van Heijst, J.; Lukin, O.; Schlüter, A. D. Angew. Chem., Int. Ed. 2009, 48, 1030.
[12] Pang, C.-M.; Luo, S.-H.; Hao, Z.-F.; Gao, J.; Huang, Z.-H.; Yu, J.-H.; Yu, S.-M.; Wang, C.-Y. Chin. J. Org. Chem. 2018, 38, 2606(in Chinese). (庞楚明, 罗时荷, 郝志峰, 高健, 黄召昊, 余家海, 余思敏, 汪朝阳, 有机化学, 2018, 38, 2606.)
[13] Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; Wang, Q.; Zou, L.; Zhang, Y.; Zhang, L.; Fang, Y.; Li, J.; Zhou, H.-C. Adv. Mater 2018, 30, 1704303.
[14] Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450.
[15] James, S. L. Chem. Soc. Rev. 2003, 32, 276.
[16] Zhang, X.-R.; Wang, X.; Fan, W.-D.; Sun, D.-F. Chin. J. Chem. 2020, 38, 509.
[17] Zeng, J.-Y.; Wang, X.-S.; Zhang, X.-Z.; Zhuo, R.-X. Acta Chim. Sinica 2019, 77, 1156(in Chinese). (曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.)
[18] Chen, Z.-Y.; Liu, J.-W.; Cui, H.; Zhang, L.; Su, C.-Y. Acta Chim. Sinica 2019, 77, 242(in Chinese). (陈之尧, 刘捷威, 崔浩, 张利, 苏成勇, 化学学报, 2019, 77, 242.)
[19] Cao, L.; Wang, T.; Wang, C. Chin. J. Chem. 2018, 36, 754.
[20] Liu, Z.-L.; Li, W.; Liu, H.; Zhuang, X.-D.; Li, S. Acta Chim. Sinica 2019, 77, 323(in Chinese). (刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77, 323.)
[21] Inagaki, M.; Radovic, L. R. Carbon 2002, 40, 2279.
[22] Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132.
[23] James, D. K.; Tour, J. M. Acc. Chem. Res. 2013, 46, 2307.
[24] Iijima, S.; Ichihashi, T. Nature 1993, 363, 603.
[25] Bethune, D.; Kiang, C. H.; De Vries, M.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Nature 1993, 363, 605.
[26] Zhu, S.; Xu, G. Nanoscale 2010, 2, 2538.
[27] Mykhailiv, O.; Zubyk, H.; Plonska-Brzezinska, M. E. Inorg. Chim. Acta 2017, 468, 49.
[28] Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Chem. Rev. 2015, 115, 4744.
[29] Jensen, W. B. J. Chem. Edu. 2006, 83, 838.
[30] Petrucci, R. H.; Harwood, W. S.; Herring, F. G. General Chemistry:Principles and Modern Applications, Vol. 1, Prentice Hall, New York, 2002.
[31] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
[32] Yazyev, O. V.; Louie, S. G. Phys. Rev. B 2010, 81, 195420.
[33] Liu, Y.; Yakobson, B. I. Nano Lett. 2010, 10, 2178.
[34] Huang, P. Y.; Ruiz-Vargas, C. S.; Van Der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y. Nature 2011, 469, 389.
[35] Lu, J.; Bao, Y.; Su, C. L.; Loh, K. P. ACS Nano 2013, 7, 8350.
[36] Fultz, B. Prog. Mater. Sci. 2010, 55, 247.
[37] Butler, K. T.; Walsh, A.; Cheetham, A. K.; Kieslich, G. Chem. Sci. 2016, 7, 6316.
[38] Wei, J. Ind. Eng. Chem. Res. 1999, 38, 5019.
[39] Karplus, M.; Kushick, J. N. Macromolecules 1981, 14, 325.
[40] Levy, R. M.; Karplus, M.; Kushick, J.; Perahia, D. Macromolecules 1984, 17, 1370.
[41] Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379.
[42] Kieslich, G.; Kumagai, S.; Butler, K. T.; Okamura, T.; Hendon, C. H.; Sun, S.; Yamashita, M.; Walsh, A.; Cheetham, A. K. Chem. Commun. 2015, 51, 15538.
[43] Nyman, J.; Day, G. M. CrystEngComm 2015, 17, 5154.
[44] Doak, J. W.; Wolverton, C.; Ozoliņš, V. Phys. Rev. B 2015, 92, 174306.
[45] Rhein, R. K.; Dodge, P. C.; Chen, M.-H.; Titus, M. S.; Pollock, T. M.; Van der Ven, A. Phys. Rev. B 2015, 92, 174117.
[46] Vela, S.; Mota, F.; Deumal, M.; Suizu, R.; Shuku, Y.; Mizuno, A.; Awaga, K.; Shiga, M.; Novoa, J. J.; Ribas-Arino, J. Nat. Commun. 2014, 5, 1.
[47] Ma, F.; Zheng, H.; Sun, Y.; Yang, D.; Xu, K.; Chu, P. K. Appl. Phys. Lett. 2012, 101, 111904.
[48] Pascal, T. A.; Goddard, W. A.; Jung, Y. Proc. Natl. Acad. Sci. 2011, 108, 11794.
[49] Chia-en, A. C.; Chen, W.; Gilson, M. K. Proc. Natl. Acad. Sci. 2007, 104, 1534.
[50] Besara, T.; Jain, P.; Dalal, N. S.; Kuhns, P. L.; Reyes, A. P.; Kroto, H. W.; Cheetham, A. K. Proc. Natl. Acad. Sci. 2011, 108, 6828.
[51] Laio, A.; Gervasio, F. L. Rep. Prog. Phys. 2008, 71, 126601.
[52] Silberberg, M. Principles of General Chemistry, McGraw-Hill Education, New York, 2012.
[53] Navrotsky, A.; Kleppa, O. J. Inorg. Nucl. Chem. 1968, 30, 479.
[54] Nguyen, P. H. Chem. Phys. Lett. 2009, 468, 90.
[55] Gyorffy, B. Phys. Rev. B 1972, 5, 2382.
[56] Zunger, A.; Wei, S.-H.; Ferreira, L.; Bernard, J. E. Phys. Rev. Lett. 1990, 65, 353.
[57] Sanchez, J. M.; Ducastelle, F.; Gratias, D. Phys. A 1984, 128, 334.
[58] Nielsen, M. A.; Chuang, I. L. Phys. Today 2001, 54, 60.
[59] Trucco, E. Bull. Math. Biophys. 1956, 18, 129.
[60] Lin, S.-K. Mol. Online 1996, 1, 57.
[61] Agrafiotis, D. K. J. Chem. Inf. Comput. Sci. 1997, 37, 576.
[62] Godden, J. W.; Stahura, F. L.; Bajorath, J. J. Chem. Inf. Comput. Sci. 2000, 40, 796.
[63] Godden, J. W.; Bajorath, J. J. Chem. Inf. Comput. Sci. 2001, 41, 1060.
[64] Graham, D. J. J. Chem. Inf. Comput. Sci. 2002, 42, 215.
[65] Dehmer, M.; Varmuza, K.; Borgert, S.; Emmert-Streib, F. J. Chem. Inf. Model. 2009, 49, 1655.
[66] Graham, D. J.; Malarkey, C.; Schulmerich, M. V. J. Chem. Inf. Comput. Sci. 2004, 44, 1601.
[67] Tarko, L. J. Math. Chem. 2011, 49, 2330.
[68] Zhdanov, Y. A. Information Entropy in Organic Chemistry, Rostov University, Rostov, Russia, 1979, p. 56.
[69] Karreman, G. Bull. Math. Biophys. 1955, 17, 279.
[70] Levine, R. Annu. Rev. Phys. Chem. 1978, 29, 59.
[71] Nguyen, P. H. Chem. Phys. Lett. 2009, 468, 90.
[72] Hô, M.; Schmider, H. L.; Weaver, D. F.; Smith Jr., V. H.; Sagar, R. P.; Esquivel, R. O. Int. J. Quantum Chem. 2000, 77, 376.
[73] Kobozev, N. Russ. J. Phys. Chem. A 1966, 40, 281.
[74] Haken, H. Information and Self-Organization. A Macroscopic Approach to Complex Systems, Springer-Verlag, Berlin, 1988, p. 240.
[75] García-Garibay, M. A. Photochem. Photobiol. Sci. 2010, 9, 1574.
[76] Nosonovsky, M. Philos. Trans. R. Soc., A 2010, 368, 4755.
[77] Li, H.-L. College Physics 2004, 12, 37(in Chinese). (李鹤龄, 大学物理, 2004, 12, 37.)
[78] Hartley, R. V. L. Bell Syst. Tech. J. 1928, 7, 535.
[79] Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379.
[80] Nemcsics, A.; Nagy, S.; Mojzes, I.; Schwedhelm, R.; Woedtke, S.; Adelung, R.; Kipp, L. Vacuum 2009, 84, 152.
[81] Torrens, F.; Castellano, G. Microelectron. J. 2007, 38, 1109.
[82] Sabirov, D. S.; Ōsawa, E. J. Chem. Inf. Model. 2015, 55, 1576.
[83] Kohn, W. Rev. Mod. Phys. 1999, 71, S59.
[84] Goldstein, J. Emergence 1999, 1, 49.
[85] Chen, X.; Gu, Z.-C.; Wen, X.-G. Phys. Rev. B 2010, 82, 155138.
[86] Holzhey, C.; Larsen, F.; Wilczek, F. Nucl. Phys. B 1994, 424, 443.
[87] Calabrese, P.; Cardy, J. J. Stat. Mech.:Theory Exp. 2004, 2004, P06002.
[88] Kitaev, A.; Preskill, J. Phys. Rev. Lett. 2006, 96, 110404.
[89] Levin, M.; Wen, X.-G. Phys. Rev. Lett. 2006, 96, 110405.
[90] Brehm, E.; Brunner, I.; Jaud, D.; Schmidt-Colinet, C. Fortschr. Phys. 2016, 64, 516.
[91] Moore, G.; Seiberg, N. Nucl. Phys. B 1989, 313, 16.
[92] Verlinde, E. Nucl. Phys. B 1988, 300, 360.
[93] Fendley, P.; Fisher, M. P. A.; Nayak, C. J. Stat. Phys. 2007, 126, 1111.
[94] Jaud, D. Ph.D. Dissertation, Ludwig-Maximilians-Universität München, München, 2002.
[95] Jeong, B. W.; Ihm, J.; Lee, G.-D. Phys. Rev. B 2008, 78, 165403.
[96] Warner, J. H.; Margine, E. R.; Mukai, M.; Robertson, A. W.; Giustino, F.; Kirkland, A. I. Science 2012, 337, 209.
[97] Jin, Y.; Cheng, J.; Varma-Nair, M.; Liang, G.; Fu, Y.; Wunderlich, B.; Xiang, X. D.; Mostovoy, R.; Zettl, A. K. J. Phys. Chem. 1992, 96, 5151.
[98] Atkins, P.; De Paula, J.; Friedman, R. Quanta, matter, and change:a molecular approach to physical chemistry, Oxford University Press, Oxford, 2009.
[99] Grochala, W. Angew. Chem., Int. Ed. 2014, 53, 3680.
[100] Vasiliev, O. O.; Muratov, V. B.; Kulikov, L. M.; Garbuz, V. V.; Duda, T. I. J. Superhard Mater. 2015, 37, 388.
[101] Muratov, V. B.; Vasil'ev, O. O.; Kulikov, L. M.; Garbuz, V. V.; Nesterenko, Y. V.; Duda, T. I. J. Superhard Mater. 2012, 34, 173.
[102] Lebedev, B. V.; Bykova, T. A.; Lobach, A. S. J. Therm. Anal. Calorim. 2000, 62, 257.
[103] Zhang, Y.; Zhao, J.; Fang, Y.; Liu, Y.; Zhao, X. Nanoscale 2018, 10, 17824.
[104] Mermin, N. D. Phys. Rev. 1968, 176, 250.
[105] Mermin, N. D.; Wagner, H. Phys. Rev. Lett. 1966, 17, 1307.
[106] Le Doussal, P.; Radzihovsky, L. Phys. Rev. Lett. 1992, 69, 1209.
[107] Iijima, S. Nature 1991, 354, 56.
[108] Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
[109] Zandiatashbar, A.; Lee, G.-H.; An, S. J.; Lee, S.; Mathew, N.; Terrones, M.; Hayashi, T.; Picu, C. R.; Hone, J.; Koratkar, N. Nat. Commun. 2014, 5, 3186.
[110] Tian, W.-C.; Zhang, X.-Y.; Chen, Z.-Q.; Ji, H.-Y. Recent Pat. Nanotechnol. 2016, 10, 3.
[111] Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Science 2007, 315, 1379.
[112] Terrones, M.; Botello-Méndez, A. R.; Campos-Delgado, J.; López-Urías, F.; Vega-Cantú, Y. I.; Rodríguez-Macías, F. J.; Elías, A. L.; Muñoz-Sandoval, E.; Cano-Márquez, A. G.; Charlier, J.-C.; Terrones, H. Nano Today 2010, 5, 351.
[113] Berman, D.; Erdemir, A.; Sumant, A. V. Mater. Today 2014, 17, 31.
[114] Araujo, P. T.; Terrones, M.; Dresselhaus, M. S. Mater. Today 2012, 15, 98.
[115] Botello-Méndez, A. R.; Declerck, X.; Terrones, M.; Terrones, H.; Charlier, J. C. Nanoscale 2011, 3, 2868.
[116] Fan, Q.; Martin-Jimenez, D.; Ebeling, D.; Krug, C. K.; Brechmann, L.; Kohlmeyer, C.; Hilt, G.; Hieringer, W.; Schirmeisen, A.; Gottfried, J. M. J. Am. Chem. Soc. 2019, 141, 17713.
[117] Sun, Y.-P.; Fu, K.; Lin, Y.; Huang, W. Acc. Chem. Res. 2002, 35, 1096.
[118] Iijima, S.; Ichihashi, T. Nature 1993, 363, 603.
[119] Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes:Their Properties and Applications, Acedemic Press, San Diego, 1996.
[120] Sun, X.; Zaric, S.; Daranciang, D.; Welsher, K.; Lu, Y.; Li, X.; Dai, H. J. Am. Chem. Soc. 2008, 130, 6551.
[121] Zandonella, C. Nature 2001, 410, 734.
[122] Zhang, D.; Ryu, K.; Liu, X.; Polikarpov, E.; Ly, J.; Tompson, M. E.; Zhou, C. Nano Lett. 2006, 6, 1880.
[123] Pushparaj, V. L.; Shaijumon, M. M.; Kumar, A.; Murugesan, S.; Ci, L.; Vajtai, R.; Linhardt, R. J.; Nalamasu, O.; Ajayan, P. M. Proc. Natl. Acad. Sci. 2007, 104, 13574.
[124] Odom, T. W.; Huang, J.-L.; Kim, P.; Lieber, C. M. Nature 1998, 391, 62.
[125] Ebbesen, T.; Takada, T. Carbon 1995, 33, 973.
[126] Kosaka, M.; Ebbesen, T. W.; Hiura, H.; Tanigaki, K. Chem. Phys. Lett. 1995, 233, 47.
[127] Dunlap, B. I. Phys. Rev. B 1992, 46, 1933.
[128] Dunlap, B. I. Phys. Rev. B 1994, 49, 5643.
[129] Wei, D.; Liu, Y. Adv. Mater 2008, 20, 2815.
[130] Bandaru, P. R.; Daraio, C.; Jin, S.; Rao, A. M. Nat. Mater. 2005, 4, 663.
[131] Yao, Z.; Postma, H. W. C.; Balents, L.; Dekker, C. Nature 1999, 402, 273.
[132] Pan, B. C.; Yang, W. S.; Yang, J. Phys. Rev. B 2000, 62, 12652.
[133] Charlier, J. C. Acc. Chem. Res. 2002, 35, 1063.
[134] Feng, B.; Zhuang, X. Faraday Discuss. 2019, DOI:10.1039/C9FD00115H.
[135] Michl, J.; Thulstrup, E. W. Tetrahedron 1976, 32, 205.
[136] Sidman, J. W.; McClure, D. S. J. Chem. Phys. 1956, 24, 757.
[137] Tétreault, N.; Muthyala, R. S.; Liu, R. S.; Steer, R. P. J. Phys. Chem. A 1999, 103, 2524.
[138] Mitchell, D. R.; Gillispie, G. D. J. Phys. Chem. 1989, 93, 4390.
[139] Murai, M.; Amir, E.; Amir, R. J.; Hawker, C. J. Chem. Sci. 2012, 3, 2721.
[140] Yamaguchi, Y.; Ogawa, K.; Nakayama, K.-i.; Ohba, Y.; Katagiri, H. J. Am. Chem. Soc. 2013, 135, 19095.
[141] Xin, H.; Ge, C.; Jiao, X.; Yang, X.; Rundel, K.; McNeill, C. R.; Gao, X. Angew. Chem., Int. Ed. 2018, 57, 1322.
[142] Nishimura, H.; Ishida, N.; Shimazaki, A.; Wakamiya, A.; Saeki, A.; Scott, L. T.; Murata, Y. J. Am. Chem. Soc. 2015, 137, 15656.
[143] Amir, E.; Murai, M.; Amir, R. J.; Cowart, J. S.; Chabinyc, M. L.; Hawker, C. J. Chem. Sci. 2014, 5, 4483.
[144] Dias, J. R. J. Phys. Org. Chem.2007, 20, 395.
[145] Yamaguchi, Y.; Takubo, M.; Ogawa, K.; Nakayama, K.-i.; Koganezawa, T.; Katagiri, H. J. Am. Chem. Soc. 2016, 138, 11335.
[146] Hou, I. C.-Y.; Shetti, V.; Huang, S.-L.; Liu, K.-L.; Chao, C.-Y.; Lin, S.-C.; Lin, Y.-J.; Chen, L.-Y.; Luh, T.-Y. Org. Chem. Front. 2017, 4, 773.
[147] Sun, Q.; Hou, I. C.-Y.; Eimre, K.; Pignedoli, C. A.; Ruffieux, P.; Narita, A.; Fasel, R. Chem. Commun. 2019, 55, 13466.
[148] Jessop, P. G. Green Chem. 2011, 13, 1391.
[149] Ghasimi, S.; Landfester, K.; Zhang, K. A. ChemCatChem 2016, 8, 694.
[150] Narayanam, J. M.; Stephenson, C. R. Chem. Soc. Rev. 2011, 40, 102.
[151] Ghasimi, S.; Bretschneider, S. A.; Huang, W.; Landfester, K.; Zhang, K. A. Adv. Sci. 2017, 4, 1700101.
[152] Kishida, K.; Horike, S.; Nakagawa, K.; Kitagawa, S. Chem. Lett. 2012, 41, 425.
[153] Anderson Jr., A. G.; Steckler, B. M. J. Am. Chem. Soc. 1959, 81, 4941.
[154] Barman, S.; Khutia, A.; Koitz, R.; Blacque, O.; Furukawa, H.; Iannuzzi, M.; Yaghi, O. M.; Janiak, C.; Hutter, J.; Berke, H. J. Mater. Chem. A 2014, 2, 18823.
[155] Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469.
[156] Rowsell, J. L. C.; Spencer, E. C.; Eckert, J.; Howard, J. A. K.; Yaghi, O. M. Science 2005, 309, 1350.
[157] Rowsell, J. L. C.; Eckert, J.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 14904.
[158] Nakagawa, K.; Tanaka, D.; Horike, S.; Shimomura, S.; Higuchi, M.; Kitagawa, S. Chem. Commun. 2010, 46, 4258.
[159] Holovics, T. C.; Robinson, R. E.; Weintrob, E. C.; Toriyama, M.; Lushington, G. H.; Barybin, M. V. J. Am. Chem. Soc. 2006, 128, 2300.
[160] Sun, S.; Zhuang, X.; Wang, L.; Zhang, B.; Ding, J.; Zhang, F.; Chen, Y. J. Mater. Chem. C 2017, 5, 2223.
[161] Yang, C.; Schellhammer, K. S.; Ortmann, F.; Sun, S.; Dong, R.; Karakus, M.; Mics, Z.; Löffler, M.; Zhang, F.; Zhuang, X.; Cánovas, E.; Cuniberti, G.; Bonn, M.; Feng, X. Angew. Chem., Int. Ed. 2017, 56, 3920.
Outlines

/