Review

Amino Acid Functionalized Crystalline Porous Polymers

  • Mei Pei ,
  • Zhang Yuanyuan ,
  • Feng Xiao
Expand
  • School of Chemistry and Chemical Engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China

Received date: 2020-06-22

  Online published: 2020-07-23

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21922502, 21674012).

Abstract

Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are representative crystalline porous polymers. Due to their high surface area, high porosity, open channels, abundant functional groups and easy functionalization, they show great applications in gas storage and separation, catalysis, energy storage, photovoltaic devices, etc. Amino acids are the basic structural units that constitute peptides and proteins, which not only have important biological functions, but also play an important role in industrial applications such as pharmaceutical production, biodegradable plastics, and chiral catalysts. The introduction of amino acids into MOFs and COFs could endow them with diverse and flexible frameworks, special pore environment, and chiral sites, improving their biocompatibility and degradability to some extent and enriching their functions and applications. This review focuses on the progress of the amino acid functionalized MOFs and COFs, including their synthetic strategies, such as employing amino acids and their derivatives as building unit, covalent modification of amino acids onto the framework, and utilizing amino acids as modulators. The advantages and disadvantages of these strategies are compared and their challenges are discussed. In addition, we also introduce their applications in chiral separation, catalysis, adsorption and proton conduction. Finally, we summarize the current challenges in the preparation of amino acid functionalized crystalline porous polymers and outlook the future research direction in this field.

Cite this article

Mei Pei , Zhang Yuanyuan , Feng Xiao . Amino Acid Functionalized Crystalline Porous Polymers[J]. Acta Chimica Sinica, 2020 , 78(10) : 1041 -1053 . DOI: 10.6023/A20060256

References

[1] (a) Ploetz, E.; Engelke, H.; Lächelt, U.; Wuttke, S. Adv. Funct. Mater. 2020, DOI:10.1002/adfm.201909062. (b) Ferey, G. Chem. Soc. Rev. 2008, 37, 191. (c) Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Acc. Chem. Res. 2005, 38, 217. (d) Horike, S.; Shimomura, S.; Kitagawa, S. Nat. Chem. 2009, 1, 695. (e) Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem. Int. Ed. 2004, 43, 2334. (f) Yaghi, O. M. Mol. Front. J. 2019, 03, 66.
[2] (a) Wang, Q.; Astruc, D. Chem. Rev. 2019, 120, 1438. (b) Stock, N.; Biswas, S. Chem. Rev. 2012, 112, 933. (c) Rowsell, J. L. C.; Yaghi, O. M. Micropor. Mesopor. Mat. 2004, 73, 3. (d) Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. O.; Snurr, R. Q.; O'Keeffe, M.; Kim, J.; Yaghi, O. M. Science 2010, 329, 424.
[3] (a) Lohse, M. S.; Bein, T. Adv. Funct. Mater. 2018, 28, 1705553. (b) Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K. T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Chem. Rev. 2020, DOI:10.1021/acs.chemrev.9b00550. (c) Huang, N.; Wang, P.; Jiang, D. Nat. Rev. Mater. 2016, 1, 16068.
[4] (a) Zhao, X.; Wang, Y.; Li, D. S.; Bu, X.; Feng, P. Adv. Mater. 2018, 30, 1705189. (b) Zeng, Y.; Zou, R.; Zhao, Y. Adv. Mater. 2016, 28, 2855. (c) Wang, Y.; Huang, N. Y.; Shen, J. Q.; Liao, P. Q.; Chen, X. M.; Zhang, J. P. J. Am. Chem. Soc. 2018, 140, 38. (d) Rodenas, T.; Luz, I.; Prieto, G.; Seoane, B.; Miro, H.; Corma, A.; Kapteijn, F.; Llabrés i Xamena, F. X.; Gascon, J. Nat. Mater. 2014, 14, 48. (e) Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 974. (f) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469. (g) Guo, Z.; Zhang, Y.; Feng, X. Acta Chim. Sinica 2020, 78, 397(in Chinese). (郭振彬, 张媛媛, 冯霄, 化学学报, 2020, 78, 397.) (h) Peng, Z.; Ding, H.; Chen, R.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681. (in Chinese). (彭正康, 丁慧敏, 陈如凡, 高超, 汪成, 化学学报, 2019, 77, 681.)
[5] (a) Pascanu, V.; Gonzalez Miera, G.; Inge, A. K.; Martin-Matute, B. J. Am. Chem. Soc. 2019, 141, 7223. (b) Liu, Y.; Xuan, W.; Cui, Y. Adv. Mater. 2010, 22, 4112. (c) Kang, Y.-S.; Lu, Y.; Chen, K.; Zhao, Y.; Wang, P.; Sun, W.-Y. Coordin. Chem. Rev. 2019, 378, 262. (d) Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. J. Am. Chem. Soc. 2011, 133, 19816. (e) Liu, J.; Zhang, M.; Wang, N.; Wang, C.; Ma, L. Acta Chim. Sinica 2020, 78, 311(in Chinese). (刘建国, 张明月, 王楠, 王晨光, 马隆龙, 化学学报, 2020, 78, 311.) (h) Hang, G.; Chen, Z.; Jiang, H. Acta Chim. Sinica 2016, 74, 113. (in Chinese). (黄刚, 陈玉贞, 江海龙, 化学学报, 2016, 74, 113.) (i) Xiao, J.; Li, D.; Jiang, H. Sci. Sin. Chim. 2018, 48, 1058.(in Chinese). (肖娟定, 李丹丹, 江海龙, 化学学报, 2018, 48, 1058.) (j) Cai, G.; Ding, M.; Wu, Q.; Jiang, H. Natl. Sci. Rev. 2020, 7, 37.
[6] (a) Wales, D. J.; Grand, J.; Ting, V. P.; Burke, R. D.; Edler, K. J.; Bowen, C. R.; Mintova, S.; Burrows, A. D. Chem. Soc. Rev. 2015, 44, 4290. (b) Hussain, M.; Wackerlig, J.; Lieberzeit, P. A. Biosensors 2013, 3, 89. (c) Kong, B.; Selomulya, C.; Zheng, G. F.; Zhao, D. Y. Chem. Soc. Rev. 2015, 44, 7997.
[7] (a) Horcajada, P.; Serre, C.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G. Angew. Chem. Int. Ed. 2006, 45, 5974. (b) Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R. E.; Serre, C. Chem. Rev. 2012, 112, 1232. (c) Zeng, J.; Wang, X.; Zhang, X.; Zhou, R. Acta Chim. Sinica 2019, 77, 1156. (in Chinese). (曾锦跃, 王小双, 张先正, 卓仁禧, 化学学报, 2019, 77, 1156.)
[8] (a) Mu, J.; He, L.; Huang, P.; Chen, X. Coordin. Chem. Rev. 2019, 399, 213039. (b) Cai, H.; Huang, Y.-L.; Li, D. Coordin. Chem. Rev. 2019, 378, 207. (c) Anderson, S. L.; Stylianou, K. C. Coordin. Chem. Rev. 2017, 349, 102.
[9] Broer, S.; Broer, A. Biochem. J. 2017, 474, 1935.
[10] Uneyama, H.; Kobayashi, H.; Tonouchi, N. Adv. Biochem. Eng./Biotechnol. 2017, 159, 273.
[11] Bischoff, R.; Schluter, H. J. Proteomics 2012, 75, 2275.
[12] Anokhina, E. V.; Jacobson, A. J. J. Am. Chem. Soc. 2004, 126, 3044.
[13] Li, J.; Pu, T.; Huang, B.; Hou, X.; Zhao, C.; Xie, L.; Chen, L. J. Colloid Interface Sci. 2018, 531, 360.
[14] Altun, Ö.; Bilcen, S. Spectrochim. Acta, Part A 2010, 75, 789.
[15] Kathalikkattil, A. C.; Roshan, R.; Tharun, J.; Babu, R.; Jeong, G. S.; Kim, D. W.; Cho, S. J.; Park, D. W. Chem. Commun. 2016, 52, 280.
[16] Wang, S.; Wahiduzzaman, M.; Davis, L.; Tissot, A.; Shepard, W.; Marrot, J.; Martineau-Corcos, C.; Hamdane, D.; Maurin, G.; Devautour-Vinot, S.; Serre, C. Nat. Commun. 2018, 9, 4937.
[17] Kundu, T.; Sahoo, S. C.; Banerjee, R. Cryst. Growth Des. 2012, 12, 4633.
[18] Boer, S. A.; Turner, D. R. CrystEngComm 2017, 19, 2402.
[19] Chen, C.; Li, H. Z. Anorg. Allg. Chem. 2019, 645, 888.
[20] Wang, S. H.; Zheng, F. K.; Zhang, M. J.; Liu, Z. F.; Chen, J.; Xiao, Y.; Wu, A. Q.; Guo, G. C.; Huang, J. S. Inorg. Chem. 2013, 52, 10096.
[21] Tan, Y.-X.; He, Y.-P.; Zhang, J. Inorg. Chem. 2011, 50, 11527.
[22] Li, M.-Y.; Wang, F.; Gu, Z.-G.; Zhang, J. RSC Adv. 2017, 7, 4872.
[23] Zhao, J.; Li, H.; Han, Y.; Li, R.; Ding, X.; Feng, X.; Wang, B. J. Mater. Chem. A 2015, 3, 12145.
[24] Kutzscher, C.; Hoffmann, H. C.; Krause, S.; Stoeck, U.; Senkovska, I.; Brunner, E.; Kaskel, S. Inorg. Chem. 2014, 54, 1003.
[25] Katsoulidis, A. P.; Antypov, D.; Whitehead, G. F. S.; Carrington, E. J.; Adams, D. J.; Berry, N. G.; Darling, G. R.; Dyer, M. S.; Rosseinsky, M. J. Nature 2019, 565, 213.
[26] (a) Deria, P.; Mondloch, J. E.; Karagiaridi, O.; Bury, W.; Hupp, J. T.; Farha, O. K. Chem. Soc. Rev. 2014, 43, 5896. (b) Cohen, S. M. J. Am. Chem. Soc. 2017, 139, 2855. (c) Li, B.; Zhang, Y.; Ma, D.; Li, L.; Li, G.; Li, G.; Shi, Z.; Feng, S. Chem. Commun. 2012, 48, 6151. (d) Li, F.; Wang, D.; Xing, Q.-J.; Zhou, G.; Liu, S.-S.; Li, Y.; Zheng, L.-L.; Ye, P.; Zou, J.-P. Appl. Catal., B 2019, 243, 621.
[27] Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005, 61, 10827.
[28] Canivet, J.; Aguado, S.; Bergeret, G.; Farrusseng, D. Chem. Commun. 2011, 47, 11650.
[29] Bonnefoy, J.; Legrand, A.; Quadrelli, E. A.; Canivet, J.; Farrusseng, D. J. Am. Chem. Soc. 2015, 137, 9409.
[30] Fracaroli, A. M.; Siman, P.; Nagib, D. A.; Suzuki, M.; Furukawa, H.; Toste, F. D.; Yaghi, O. M. J. Am. Chem. Soc. 2016, 138, 8352.
[31] Baek, J.; Rungtaweevoranit, B.; Pei, X.; Park, M.; Fakra, S. C.; Liu, Y.-S.; Matheu, R.; Alshmimri, S. A.; Alshehri, S.; Trickett, C. A.; Somorjai, G. A.; Yaghi, O. M. J. Am. Chem. Soc. 2018, 140, 18208.
[32] Marshall, R. J.; Hobday, C. L.; Murphie, C. F.; Griffin, S. L.; Morrison, C. A.; Moggach, S. A.; Forgan, R. S. J. Mater. Chem. A 2016, 4, 6955.
[33] Gutov, O. V.; Molina, S.; Escudero-Adan, E. C.; Shafir, A. Chemistry 2016, 22, 13582.
[34] Liu, L.; Qiao, Z.; Cui, X.; Pang, C.; Liang, H.; Xie, P.; Luo, X.; Huang, Z.; Zhang, Y.; Zhao, Z. ACS Appl. Mater. Interfaces 2019, 11, 23039.
[35] Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Falcaro, P. CrystEngComm 2016, 18, 4264.
[36] Zhang, S.-Y.; Li, D.; Guo, D.; Zhang, H.; Shi, W.; Cheng, P.; Wojtas, L.; Zaworotko, M. J. J. Am. Chem. Soc. 2015, 137, 15406.
[37] Yusran, Y.; Fang, Q.; Qiu, S. Israel J. Chem. 2018, 58, 971.
[38] Zhang, S.; Zheng, Y.; An, H.; Aguila, B.; Yang, C. X.; Dong, Y.; Xie, W.; Cheng, P.; Zhang, Z.; Chen, Y.; Ma, S. Angew. Chem., Int. Ed. 2018, 57, 16754.
[39] Luo, B.; He, J.; Li, Z.; Lan, F.; Wu, Y. ACS Appl. Mater. Interfaces 2019, 11, 47218.
[40] Ma, Y. F.; Wang, L. J.; Zhou, Y. L.; Zhang, X. X. Nanoscale 2019, 11, 5526.
[41] Okamoto, Y.; Ikai, T. Chem. Soc. Rev. 2008, 37, 2593.
[42] (a) Peluso, P.; Mamane, V.; Cossu, S. J. Chromatogr. A 2014, 1363, 11. (b) Bhattacharjee, S.; Khan, M.; Li, X.; Zhu, Q.-L.; Wu, X.-T. Catalysts 2018, 8, 120.
[43] Zhang, J. H.; Nong, R. Y.; Xie, S. M.; Wang, B. J.; Ai, P.; Yuan, L. M. Electrophoresis 2017, 38, 2513.
[44] Kou, W.-T.; Yang, C.-X.; Yan, X.-P. J. Mater. Chem. A 2018, 6, 17861.
[45] Navarro-Sánchez, J.; Argente-García, A. I.; Moliner-Martínez, Y.; Roca-Sanjuán, D.; Antypov, D.; Campíns-Falcó, P.; Rosseinsky, M. J.; Martí-Gastaldo, C. J. Am. Chem. Soc. 2017, 139, 4294.
[46] Huang, K.; Dong, X.; Ren, R.; Jin, W. AIChE J. 2013, 59, 4364.
[47] Chan, J. Y.; Zhang, H.; Nolvachai, Y.; Hu, Y.; Zhu, H.; Forsyth, M.; Gu, Q.; Hoke, D. E.; Zhang, X.; Marriot, P. J.; Wang, H. Angew. Chem., Int. Ed. 2018, 130, 17376.
[48] Lu, Y.; Zhang, H.; Chan, J. Y.; Ou, R.; Zhu, H.; Forsyth, M.; Marijanovic, E. M.; Doherty, C. M.; Marriott, P. J.; Holl Banaszak, M. M.; Wang, H. Angew. Chem., Int. Ed. 2019, 131, 17084.
[49] Mon, M.; Ferrando-Soria, J.; Grancha, T.; Fortea-Perez, F. R.; Gascon, J.; Leyva-Perez, A.; Armentano, D.; Pardo, E. J. Am. Chem. Soc. 2016, 138, 7864.
[50] Perez-Cejuela, H. M.; Mon, M.; Ferrando-Soria, J.; Pardo, E.; Armentano, D.; Simo-Alfonso, E. F.; Herrero-Martinez, J. M. Mikrochim. Acta 2020, 187, 201.
[51] Feng, X.; Jena, H. S.; Leus, K.; Wang, G.; Ouwehand, J.; Van Der Voort, P. J. Catal. 2018, 365, 36.
[52] Jeong, G. S.; Kathalikkattil, A. C.; Babu, R.; Chung, Y. G.; Won Park, D. Chin. J. Catal. 2018, 39, 63.
Outlines

/