Review

Bioassay Applications of Aptamer-Functionalized Rare Earth Nanomaterials

  • Jia Yiyi ,
  • Wang Wenjie ,
  • Liang Ling ,
  • Yuan Quan
Expand
  • Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China

Received date: 2020-06-19

  Online published: 2020-07-28

Supported by

Project supported by the National Natural Science Foundation of China (No. 21904037), Natural Science Foundation of Hunan Province, China (Nos. 2020JJ4173, 2020JJ5038) and Changsha Municipal Science and Technology Projects, China (No. Kq1901030).

Abstract

The levels of some biomolecules and ions in the body are usually related to the structural and functional changes of cells, tissues, organs, etc., which directly affect the prevention, diagnosis, and treatment of diseases. Therefore, in vivo bioassays of these substances are of great significance in medical and healthcare fields. The nano fluorescent probes consisted of rare earth nano materials have advantages of high sensitivity, simplicity, efficiency, and strong anti-interference ability, thus showing great potential in bioassays. The functionalization of aptamers on rare earth nanomaterials can further provide better specific recognition ability and biocompatibility for nano fluorescent probes, thereby enhancing their bioassays ability in complex samples. In this paper, the research progress of aptamer-functionalized rare earth nanomaterials as nano fluorescent probes in the field of bioassays is reviewed, and the main types, properties, detection mechanisms and detection substances are briefly introduced.

Cite this article

Jia Yiyi , Wang Wenjie , Liang Ling , Yuan Quan . Bioassay Applications of Aptamer-Functionalized Rare Earth Nanomaterials[J]. Acta Chimica Sinica, 2020 , 78(11) : 1177 -1184 . DOI: 10.6023/A20060252

References

[1] Pehlivan, Z. S.; Torabfam, M.; Kurt, H.; Ow-Yang, C.; Hildebrandt, N.; Yüce, M. Microchim. Acta 2019, 186, 563.
[2] Escudero, A.; Becerro, A. I.; Carrillo-Carrión, C.; Núñez, N. O.; Zyuzin, M. V.; Laguna, M.; González-Mancebo, D.; Ocaña, M.; Parak, W. J. Nanophotonics 2017, 6, 881.
[3] (a) Wang, G. F.; Peng, Q.; Li, Y. D. Acc. Chem. Res. 2011, 44, 322; (b) Ma, Q. Q.; Wang, J.; Li, Z. H.; Lv, X. B.; Liang, L.; Yuan, Q. Small 2019, 15, 1804969; (c) Xiong, L.; Fan, Y.; Zhang, F. Acta Chim. Sinica 2019, 77, 1239(in Chinese). (熊麟, 凡勇, 张凡, 化学学报, 2019, 77, 1239.)
[4] Kuningas, K.; Ukonaho, T.; Päkkilä, H.; Rantanen, T.; Rosenberg, J.; Lövgren, T.; Soukka, T. Anal. Chem. 2006, 78, 4690.
[5] Ma, L.; Liu, F. Y.; Lei, Z.; Wang, Z. X. Biosens. Bioelectron. 2017, 87, 638.
[6] Saleh, S. M.; Ali, R.; Hirsch, T.; Wolfbeis, O. S. J. Nanopart. Res. 2011, 13, 4603.
[7] Wang, Y. H.; Shen, P.; Li, C. Y.; Wang, Y.; Liu, Z. Y. Anal. Chem. 2012, 84, 1466.
[8] Tuerk, C.; Gold, L. Science 1990, 249, 505.
[9] Ellington, A. D.; Szostak, J. W. Nature 1990, 346, 818.
[10] Yüce, M.; Ullah, N.; Budak, H. Analyst 2015, 140, 5379.
[11] Tu, J. W.; Gan, Y.; Liang, T.; Wang, Q.; Ren, T. L.; Sun, Q. Y.; Wan, H.; Wang, P. Front. Chem. 2018, 6, 333.
[12] Qu, F.; Sun, C.; Lv, X. X.; You, J. M. Microchim. Acta 2018, 185, 359.
[13] Hao, T. T.; Wu, X. L.; Xu, L. G.; Liu, L. Q.; Ma, W.; Kuang, H.; Xu, C. Small 2017, 13, 1603944.
[14] Afzalinia, A.; Mirzaee, M. ACS Appl. Mater. Interfaces 2020, 12, 16076.
[15] Bashmakova, E. E.; Krasitskaya, V. V.; Zamay, G. S.; Zamay, T. N.; Frank, L. A. Talanta 2019, 199, 674.
[16] Jin, B.; Wang, S.; Lin, M.; Jin, Y.; Zhang, S.; Cui, X.; Gong, Y.; Li, A.; Xu, F.; Lu, T. J. Biosens. Bioelectron. 2017, 90, 525.
[17] Kong, R. M.; Zhang, X. B.; Chen, Z.; Tan, W. Small 2011, 7, 2428.
[18] Wang, F.; Banerjee, D.; Liu, Y. S.; Chen, X. Y.; Liu, X. G. Analyst 2010, 135, 1839.
[19] (a) Ang, L. Y.; Lim, M. E.; Ong, L. C.; Zhang, Y. Nanomedicine 2011, 6, 1273; (b) Chen, J.; Zhao, J. X. Sensors 2012, 12, 2414.
[20] (a) Heer, S.; Lehmann, O.; Haase, M.; Güdel, H. U. Angew. Chem., Int. Ed. 2003, 42, 3179; (b) Lin, M.; Zhao, Y.; Wang, S. Q.; Liu, M.; Duan, Z. F.; Chen, Y. M.; Li, F.; Xu, F.; Lu, T. J. Biotechnol. Adv. 2012, 30, 1551; (c) DaCosta, M. V.; Doughan, S.; Han, Y.; Krull, U. J. Anal. Chim. Acta 2014, 832, 1.
[21] Chivian, J. S.; Case, W. E.; Eden, D. D. Appl. Phys. Lett. 1979, 35, 124.
[22] Hong, E.; Liu, L. M.; Bai, L. M.; Xia, C. H.; Gao, L.; Zhang, L. W.; Wang, B. Q. Mater. Sci. Eng., C 2019, 105, 110097.
[23] Auzel, F. Chem. Rev. 2004, 104, 139.
[24] Yao, C. Z.; Yao, C. Z.; Tong, Y. X. TrAC, Trends Anal. Chem. 2012, 39, 60.
[25] Lingeshwar Reddy, K.; Balaji, R.; Kumar, A.; Krishnan, V. Small 2018, 14, 1801304.
[26] Lin, Q. S.; Li, Z. H.; Yuan, Q. Chin. Chem. Lett. 2019, 30, 1547.
[27] (a) Liu, Y. L.; Kuang, J. Y.; Lei, B. F.; Shi, C. S. J. Mater. Chem. 2005, 15, 4025; (b) Pan, Z. W.; Lu, Y. Y.; Liu, F. Nat. Mater. 2011, 11, 58; (c) Maldiney, T.; Bessière, A.; Seguin, J.; Teston, E.; Sharma, S. K.; Viana, B.; Bos, A. J. J.; Dorenbos, P.; Bessodes, M.; Gourier, D.; Scherman, D.; Richard, C. Nat. Mater. 2014, 13, 418.
[28] Matsuzawa, T.; Aoki, Y.; Takeuchi, N. J. Electrochem. Soc. 1996, 143, 2670.
[29] le Masne de Chermont, Q.; Chaneac, C.; Seguin, J.; Pelle, F.; Maitrejean, S.; Jolivet, J. P.; Gourier, D.; Bessodes, M.; Scherman, D. Proc. Nat. Acad. Sci. 2007, 104, 9266.
[30] Tu, T. Z.; Jiang, G. J. J. Mater. Sci.:Mater. Electron. 2018, 29, 3146.
[31] (a) Ge, P. H.; Sun, K. N.; Cheng, Y. Optik 2019, 188, 200; (b) Liu, F.; Liang, Y. J.; Pan, Z. W. Phys. Rev. Lett. 2014, 113, 177401; (c) Li, Z. J.; Huang, L.; Zhang, Y. W.; Zhao, Y.; Yang, H.; Han, G. Nano Res. 2017, 10, 1840; (d) Xue, Z. L.; Li, X. L.; Li, Y. B.; Jiang, M. Y.; Ren, G. Z.; Liu, H. R.; Zeng, S. J.; Hao, J. H. Nanoscale 2017, 9, 7276.
[32] (a) Zhou, H. C. J.; Kitagawa, S. Chem. Soc. Rev. 2014, 43, 5415; (b) Ding, M.; Cai, X.; Jiang, H. L. Chem. Sci. 2019, 10, 10209.
[33] (a) Zhang, S. Y.; Shi, W.; Cheng, P.; Zaworotko, M. J. J. Am. Chem. Soc. 2015, 137, 12203; (b) Wu, S. Y.; Lin, Y. N.; Liu, J.; Shi, W.; Yang, G. M.; Cheng, P. Adv. Funct. Mater. 2018, 28, 1707169; (c) Xia, C.; Xu, Y.; Cao, M. M.; Liu, Y. P.; Xia, J. F.; Jiang, D. Y.; Zhou, G. H.; Xie, R. J.; Zhang, D. F.; Li, H. L. Talanta 2020, 212, 120795; (d) Ren, H. X.; Miao, Y. B.; Zhang, Y. Microchim. Acta 2020, 187, 114; (e) Qu, F.; Ding, Y. R.; Lv, X. X.; Xia, L.; You, J. M.; Han, W. L. Anal. Bioanal. Chem. 2019, 411, 3979.
[34] Cui, Y. J.; Zhang, J.; He, H. J.; Qian, G. D. Chem. Soc. Rev. 2018, 47, 5740.
[35] Rieter, W. J.; Taylor, K. M. L.; Lin, W. J. Am. Chem. Soc. 2007, 129, 9852.
[36] Mahata, P.; Mondal, S. K.; Singha, D. K.; Majee, P. Dalton Trans. 2017, 46, 301.
[37] Juskowiak, B. Anal. Bioanal. Chem. 2011, 399, 3157.
[38] (a) Sakamoto, T.; Ennifar, E.; Nakamura, Y. Biochimie 2018, 145, 91; (b) Zhou, J. H.; Rossi, J. Nat. Rev. Drug Discovery 2017, 16, 181.
[39] Zhang, L.; Lei, J. P.; Liu, J. T.; Ma, F. J.; Ju, H. X. Biomaterials 2015, 67, 323.
[40] Huo, Y.; Qi, L.; Lv, X. J.; Lai, T.; Zhang, J.; Zhang, Z. Q. Biosens. Bioelectron. 2016, 78, 315.
[41] Chen, H. Q.; Yuan, F.; Wang, S. Z.; Xu, J.; Zhang, Y. Y.; Wang, L. Biosens. Bioelectron. 2013, 48, 19.
[42] Duan, N.; Wu, S. J.; Zhu, C. Q.; Ma, X. Y.; Wang, Z. P.; Yu, Y.; Jiang, Y. Anal. Chim. Acta 2012, 723, 1.
[43] Qu, A. H.; Wu, X. L.; Xu, L. G.; Liu, L. Q.; Ma, W.; Kuang, H.; Xu, C. L. Nanoscale 2017, 9, 3865.
[44] Liu, J. M.; Yuan, X, Y.; Liu, H, L.; Cheng, D.; Wang, S. RSC Adv. 2018, 8, 28414.
[45] Wang, Y.; Bao, L.; Liu, Z. H.; Pang, D. W. Anal. Chem. 2011, 83, 8130.
[46] Zhu, H.; Ding, Y.; Wang, A.; Sun, X.; Wu, X. C.; Zhu, J. J. J. Mater. Chem. B 2015, 3, 458.
[47] Liu, X. Y.; Ren, J.; Su, L. H.; Gao, X.; Tang, Y. W.; Ma, T.; Zhu, L. J.; Li, J. R. Biosens. Bioelectron. 2017, 87, 203.
[48] (a) Holmes, P.; James, K. A. F.; Levy, L. S. Sci. Total Environ. 2009, 408, 171; (b)Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D. Environ. Toxicol. 2003, 18, 149.
[49] (a) Yang, Y. B.; Yang, X. D.; Yang, Y. J.; Yuan, Q. Carbon 2018, 129, 380; (b) Wang, Q.; Chen, L.; Long, Y. T.; Tian, H.; Wu, J. C. Theranostics 2013, 3, 395.
[50] Wang, J.; Wei, T.; Li, X. Y.; Zhang, B. H.; Wang, J. X.; Huang, C.; Yuan, Q. Angew. Chem. Int. Ed. 2014, 53, 1616.
[51] Zhao, J.; Gao, J.; Xue, W.; Di, Z.; Xing, H.; Lu, Y.; Li, L. L. J. Am. Chem. Soc. 2018, 140, 578.
[52] Wu, S.; Duan, N.; Ma, X.; Xia, Y.; Wang, H.; Wang, Z.; Zhang, Q. Anal. Chem. 2012, 84, 6263.
[53] (a) Liu, Y.; Ouyang, Q.; Li, H.; Chen, M.; Zhang, Z.; Chen, Q. S. J. Agric. Food Chem. 2018, 66, 6188; (b) Wu, S. J.; Duan, N.; Shi, Z.; Fang, C. C.; Wang, Z. P. Talanta 2014, 128, 327.
[54] Xu, Y. X.; Meng, X. F.; Liu, J. L.; Dang, S.; Shi, L. Y.; Sun, L. N. CrystEngComm 2016, 18, 4032.
[55] Guan, X. L.; Li, Z. F.; Wang, L.; Liu, M. N.; Wang, K. L.; Yang, X. Q.; Li, Y. L.; Hu, L. L.; Zhao, X. L.; Lai, S. J.; Lei, Z. Q. Acta Chim. Sinica 2019, 77, 1268(in Chinese). (关晓琳, 李志飞, 王林, 刘美娜, 王凯龙, 杨学琴, 李亚丽, 胡丽丽, 赵小龙, 来守军, 雷自强,化学学报, 2019, 77, 1268.)
Outlines

/