Review

Recent Progress on Proton-Conductive Metal-Organic Frameworks and Their Proton Exchange Membranes

  • Sun Lian ,
  • Wang Honglei ,
  • Yu Jinshan ,
  • Zhou Xingui
Expand
  • Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2020-06-09

  Online published: 2020-08-01

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 91426304, 51372274, 51502343).

Abstract

Proton exchange membranes (PEMs) are important components for novel fuel cells. A significant effort has been made by researchers towards proton conductive materials and membranes, some of which have been successfully commercialized. However, commercial perfluorosulfonic acid membranes like Nafion suffer key issues which limit their large-scale applications in a wide temperature range, including high cost and low operation temperature. Therefore, it is highly desirable to prepare new-type PEMs possessing high proton conductivity, thermal and chemical stability, water uptake and excellent durability. Metal organic frameworks (MOFs) are attractive candidates for proton exchange membranes due to their high porosity, ordering pore structures and excellent designability. This review focuses on the recent progress on proton-conductive MOF structures and their proton exchange membranes. In the first section, the authors briefly introduce the proton conducting mechanism of MOFs and their testing methods. The Grotthuss mechanism refers to the proton transferring process in a continuous and long-range hydrogen network, whereas the Vehicular mechanism involves in the diffusion of proton carrier molecules. Then in the next section, the authors summarize the progress on bulk MOFs proton conductors. According to the work condition, proton-conducting MOFs can be divided into two types, namely working under humid and anhydrous environment. These works show the potential of proton-conductive MOFs to be applied in a wide temperature range, and some of them even have reached a relatively high conductivity larger than 10-2 S·cm-1, comparable with Nafion. In the third section, a review on the MOFs-based proton exchange membranes is shown. Researchers have proven that MOFs thin films have huge potential on proton conduction. Nevertheless, most of the MOFs-based PEMs are still mixed matrix membrane (MMM) structure. In order to boost the performance of MMMs-type MOFs-based PEMs, several strategies can be applied such as modifying MOF with functional groups, using 1D/2D MOFs structure and introducing the third phase into membranes. Last, the authors discuss the current issues and perspectives on MOFs proton conductors and their PEMs.

Cite this article

Sun Lian , Wang Honglei , Yu Jinshan , Zhou Xingui . Recent Progress on Proton-Conductive Metal-Organic Frameworks and Their Proton Exchange Membranes[J]. Acta Chimica Sinica, 2020 , 78(9) : 888 -900 . DOI: 10.6023/A20060221

References

[1] Escorihuela, J.; Narducci, R.; Compañ, V.; Costantino, F. Adv. Mater. Interfaces 2019, 6, 1801146.
[2] Haubold, H. G.; Vad, T.; Jungbluth, H.; Hiller, P. Electrochim. Acta 2001, 46, 1559.
[3] Jaafar, J.; Nordin, M.; Hadi, N. A.; Ismail, A. F.; Othman, M. H. D.; A Rahman, M.; Aziz, F. J. Membr. Sci. Res. 2019, 5, 65.
[4] Fang, J.; Shen, P. K. J. Membr. Sci. 2006, 285, 317.
[5] Zhang, Y.; Zheng, L.; Liu, B.; Wang, H.; Shi, H. J. Membr. Sci. 2019, 584, 173.
[6] Chen, Z. Y.; Liu, J. W.; Cui, H.; Zhang, L.; Su, C. Y. Acta Chim. Sinica 2019, 77, 242(in Chinese). (陈之尧, 刘捷威, 崔浩, 张利, 苏成勇, 化学学报, 2019, 77, 242.)
[7] Qiao, W.; Song, T.; Zhao, B. Chin. J. Chem. 2019, 37, 474.
[8] Dai, M. M.; Wang, J.; Li, L. G.; Wang, Q.; Liu, M. N.; Zhang, Y. G. Acta Chim. Sinica 2020, 78, 355(in Chinese). (代迷迷, 王健, 李麟阁, 王琪, 刘美男, 张跃钢, 化学学报, 2020, 78, 355.)
[9] He, T.; Zhang, Y.-Z.; Wu, H.; Kong, X.-J.; Liu, X.-M.; Xie, L.-H.; Dou, Y.; Li, J.-R. ChemPhysChem 2017, 18, 3245.
[10] Kanda, S.; Yamashita, K.; Ohkawa, K. Bull. Chem. Soc. Jpn. 1979, 52, 3296.
[11] Shimizu, G. K. H.; Taylor, J. M.; Kim, S. Science 2013, 341, 354.
[12] Ye, Y.; Gong, L.; Xiang, S.; Zhang, Z.; Chen, B. Adv. Mater. 2020, 32, 1907090.
[13] Lim, D. W.; Kitagawa, H. Chem. Rev. 2020, 120, 8416.
[14] Li, W.-H.; Deng, W.-H.; Wang, G.-E.; Xu, G. EnergyChem 2020, 2, 100029.
[15] Agmon, N. Chem. Phys. Lett. 1995, 244, 456.
[16] Kreuer, K. D.; Rabenau, A.; Weppner, W. Angew. Chem. Int. Ed. 1982, 21, 208.
[17] Zhang, J.; Bai, H.-J.; Ren, Q.; Luo, H.-B.; Ren, X.-M.; Tian, Z.-F.; Lu, S. ACS Appl. Mater. Interfaces 2018, 10, 28656.
[18] Wang, Z. T.; Li, H.; Yan, S. C.; Fang, Q. R. Acta Chim. Sinica 2020, 78, 63(in Chinese). (王志涛, 李辉, 颜士臣, 方千荣, 化学学报, 2020, 78, 63.)
[19] Umeyama, D.; Horike, S.; Inukai, M.; Itakura, T.; Kitagawa, S. J. Am. Chem. Soc. 2012, 134, 12780.
[20] Liu, M.; Chen, L.; Lewis, S.; Chong, S. Y.; Little, M. A.; Hasell, T.; Aldous, I. M.; Brown, C. M.; Smith, M. W.; Morrison, C. A.; Hardwick, L. J.; Cooper, A. I. Nat. Commun. 2016, 7, 12750.
[21] Zhang, K.; Xie, X.; Li, H.; Gao, J.; Nie, L.; Pan, Y.; Xie, J.; Tian, D.; Liu, W.; Fan, Q. Adv. Mater. 2017, 29, 1701804.
[22] Wu, L.; Yang, Y.; Ye, Y.; Yu, Z.; Song, Z.; Chen, S.; Chen, L.; Zhang, Z.; Xiang, S. ACS Appl. Energy Mater. 2018, 1, 5068.
[23] Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303(in Chinese). (卞磊, 李炜, 魏振振, 刘晓威, 李松, 化学学报, 2018, 76, 303.)
[24] Yang, F.; Huang, H.; Wang, X.; Li, F.; Gong, Y.; Zhong, C.; Li, J.-R. Cryst. Growth Des. 2015, 15, 5827.
[25] Losch, P.; Joshi, H. R.; Vozniuk, O.; Grünert, A.; Ochoa-Hernández, C.; Jabraoui, H.; Badawi, M.; Schmidt, W. J. Am. Chem. Soc. 2018, 140, 17790.
[26] Sun, Z.; Yu, S.; Zhao, L.; Wang, J.; Li, Z.; Li, G. Chem.-Eur. J. 2018, 24, 10829.
[27] Yamada, T.; Sadakiyo, M.; Kitagawa, H. J. Am. Chem. Soc. 2009, 131, 3144.
[28] Yang, F.; Xu, G.; Dou, Y.; Wang, B.; Zhang, H.; Wu, H.; Zhou, W.; Li, J.-R.; Chen, B. Nat. Energy 2017, 2, 877.
[29] Tang, Q.; Yang, Y.-L.; Zhang, N.; Liu, Z.; Zhang, S.-H.; Tang, F.-S.; Hu, J.-Y.; Zheng, Y. Z.; Liang, F. P. Inorg. Chem. 2018, 57, 9020.
[30] Wu, H.; Yang, F.; Lv, X. L.; Wang, B.; Zhang, Y.-Z.; Zhao, M. J.; Li, J. R. J. Mater. Chem. A 2017, 5, 14525.
[31] Feng, L.; Wang, H. S.; Xu, H. L.; Huang, W. T.; Zeng, T. Y.; Cheng, Q. R.; Pan, Z. Q.; Zhou, H. Chem. Commun. 2019, 55, 1762.
[32] Zhang, F.-M.; Dong, L.-Z.; Qin, J.-S.; Guan, W.; Liu, J.; Li, S.-L.; Lu, M.; Lan, Y. Q.; Su, Z. M.; Zhou, H. C. J. Am. Chem. Soc. 2017, 139, 6183.
[33] Horike, S.; Chen, W.; Itakura, T.; Inukai, M.; Umeyama, D.; Asakura, H.; Kitagawa, S. Chem. Commun. 2014, 50, 10241.
[34] Liu, L.; Yao, Z.; Ye, Y.; Liu, C.; Lin, Q.; Chen, S.; Xiang, S.; Zhang, Z. ACS Appl. Mater. Interfaces 2019, 11, 16490.
[35] Liu, R.; Zhao, L.; Yu, S.; Liang, X.; Li, Z.; Li, G. Inorg. Chem. 2018, 57, 11560.
[36] Chen, H.; Han, S. Y.; Liu, R. H.; Chen, T. F.; Bi, K. L.; Liang, J. B.; Deng, Y. H.; Wan, C. Q. J. Power Sources 2018, 376, 168.
[37] Meng, X.; Wei, M.-J.; Wang, H. N.; Zang, H. Y.; Zhou, Z. Y. Dalton Trans. 2018, 47, 1383.
[38] Gui, D.; Dai, X.; Tao, Z.; Zheng, T.; Wang, X.; Silver, M. A.; Shu, J.; Chen, L.; Wang, Y.; Zhang, T. J. Am. Chem. Soc. 2018, 140, 6146.
[39] Shigematsu, A.; Yamada, T.; Kitagawa, H. J. Am. Chem. Soc. 2011, 133, 2034.
[40] Sarango-Ramírez, M. K.; Lim, D.-W.; Kolokolov, D. I.; Khudozhitkov, A. E.; Stepanov, A. G.; Kitagawa, H. J. Am. Chem. Soc. 2020, 142, 6861.
[41] Bao, S. S.; Shimizu, G. K.; Zheng, L. M. Coord. Chem. Rev. 2019, 378, 577.
[42] Taylor, J. M.; Mah, R. K.; Moudrakovski, I. L.; Ratcliffe, C. I.; Vaidhyanathan, R.; Shimizu, G. K. H. J. Am. Chem. Soc. 2010, 132, 14055.
[43] Taylor, J. M.; Dawson, K. W.; Shimizu, G. K. H. J. Am. Chem. Soc. 2013, 135, 1193.
[44] Ramaswamy, P.; Wong, N. E.; Gelfand, B. S.; Shimizu, G. K. H. J. Am. Chem. Soc. 2015, 137, 7640.
[45] Luo, Y. H.; Yi, L. Q.; Lu, J. N.; Dong, L.-Z.; Lan, Y. Q. CrystEngComm 2018, 20, 6077.
[46] Li, X. M.; Dong, L. Z.; Li, S. L.; Xu, G.; Liu, J.; Zhang, F. M.; Lu, L. S.; Lan, Y. Q. ACS Energy Lett. 2017, 2, 2313.
[47] Li, R.; Wang, S. H.; Chen, X. X.; Lu, J.; Fu, Z. H.; Li, Y.; Xu, G.; Zheng, F. K.; Guo, G. C. Chem. Mater. 2017, 29, 2321.
[48] Nagarkar, S. S.; Unni, S. M.; Sharma, A.; Kurungot, S.; Ghosh, S. K. Angew. Chem. 2014, 126, 2676.
[49] Hurd, J. A.; Vaidhyanathan, R.; Thangadurai, V.; Ratcliffe, C. I.; Moudrakovski, I. L.; Shimizu, G. K. H. Nat. Chem. 2009, 1, 705.
[50] Bureekaew, S.; Horike, S.; Higuchi, M.; Mizuno, M.; Kawamura, T.; Tanaka, D.; Yanai, N.; Kitagawa, S. Nat. Mater. 2009, 8, 831.
[51] Ye, Y.; Guo, W.; Wang, L.; Li, Z.; Song, Z.; Chen, J.; Zhang, Z.; Xiang, S.; Chen, B. J. Am. Chem. Soc. 2017, 139, 15604.
[52] Sun, X. L.; Deng, W. H.; Chen, H.; Han, H. L.; Taylor, J. M.; Wan, C. Q.; Xu, G. Chem.-Eur. J. 2017, 23, 1248.
[53] Hermes, S.; Schröder, F.; Chelmowski, R.; Wöll, C.; Fischer, R. A. J. Am. Chem. Soc. 2005, 127, 13744.
[54] Xu, G.; Otsubo, K.; Yamada, T.; Sakaida, S.; Kitagawa, H. J. Am. Chem. Soc. 2013, 135, 7438.
[55] Kim, S.; Wang, H.; Lee, Y. M. Angew. Chem. Int. Ed. 2019, 58, 17512.
[56] Dechnik, J.; Gascon, J.; Doonan, C. J.; Janiak, C.; Sumby, C. J. Angew. Chem. Int. Ed. 2017, 56, 9292.
[57] Niluroutu, N.; Pichaimuthu, K.; Sarmah, S.; Dhanasekaran, P.; Shukla, A.; Unni, S. M.; Bhat, S. D. New J. Chem. 2018, 42, 16758.
[58] Guo, Y.; Jiang, Z.; Ying, W.; Chen, L.; Liu, Y.; Wang, X.; Jiang, Z.-J.; Chen, B.; Peng, X. Adv. Mater. 2018, 30, 1705155.
[59] Cai, Y. Y.; Yang, Q.; Zhu, Z. Y.; Sun, Q. H.; Zhu, A. M.; Zhang, Q. G.; Liu, Q. L. J. Membr. Sci. 2019, 590, 117277.
[60] Han, R.; Wu, P. ACS Appl. Mater. Interfaces 2018, 10, 18351.
[61] Wang, L.; Deng, N.; Wang, G.; Ju, J.; Cheng, B.; Kang, W. ACS Appl. Mater. Interfaces 2019, 11, 39979.
[62] Rao, Z.; Feng, K.; Tang, B.; Wu, P. J. Membr. Sci. 2017, 533, 160.
[63] Bai, Z.; Liu, S.; Chen, P.; Cheng, G.; Wu, G.; Liu, Y. Nanotechnology 2020, 31, 125702.
[64] Bai, Z.; Liu, S.; Cheng, G.; Wu, G.; Liu, Y. Micropor. Mesopor. Mat. 2020, 292, 109763.
[65] Yang, L.; Tang, B.; Wu, P. J. Mater. Chem. A 2015, 3, 15838.
[66] Ru, C.; Gu, Y.; Na, H.; Li, H.; Zhao, C. ACS Appl. Mater. Interfaces 2019, 11, 31899.
[67] Zhang, F.; Zhang, T.; Zou, X.; Liang, X.; Zhu, G.; Qu, F. Solid State Ionics 2017, 301, 125.
[68] Rao, Z.; Tang, B.; Wu, P. ACS Appl. Mater. Interfaces 2017, 9, 22597.
[69] Dong, X.-Y.; Wang, J.-H.; Liu, S.-S.; Han, Z.; Tang, Q.-J.; Li, F.-F.; Zang, S.-Q. ACS Appl. Mater. Interfaces 2018, 10, 38209.
[70] Adams, R.; Carson, C.; Ward, J.; Tannenbaum, R.; Koros, W. Micropor. Mesopor. Mat. 2010, 131, 13.
[71] Sabetghadam, A.; Liu, X.; Gottmer, S.; Chu, L.; Gascon, J.; Kapteijn, F. J. Membr. Sci. 2019, 570-571, 226.
[72] Liu, Y.; Liu, G.; Zhang, C.; Qiu, W.; Yi, S.; Chernikova, V.; Chen, Z.; Belmabkhout, Y.; Shekhah, O.; Eddaoudi, M.; Koros, W. Adv. Sci. 2018, 5, 1800982.
[73] Cao, L.; Tao, K.; Huang, A.; Kong, C.; Chen, L. Chem. Commun. 2013, 49, 8513.
[74] Anjum, M. W.; Vermoortele, F.; Khan, A. L.; Bueken, B.; De Vos, D. E.; Vankelecom, I. F. J. ACS Appl. Mater. Interfaces 2015, 7, 25193.
[75] Ordoñez, M. J. C.; Balkus, K. J.; Ferraris, J. P.; Musselman, I. H. J. Membr. Sci. 2010, 361, 28.
[76] Dorosti, F.; Omidkhah, M.; Abedini, R. Chem. Eng. Res. Des. 2014, 92, 2439.
[77] Duan, L.; Wang, Y.; Zhang, Y.; Liu, J. Appl. Surf. Sci. 2015, 355, 436.
[78] Li, W.; Samarasinghe, S. A. S. C.; Bae, T.-H. J. Ind. Eng. Chem. 2018, 67, 156.
[79] Ru, C.; Li, Z.; Zhao, C.; Duan, Y.; Zhuang, Z.; Bu, F.; Na, H. ACS Appl. Mater. Interfaces 2018, 10, 7963.
[80] Katz, M. J.; Brown, Z. J.; Colón, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. Chem. Commun. 2013, 49, 9449.
[81] Peng, X.; Ye, L.; Ding, Y.; Yi, L.; Zhang, C.; Wen, Z. Appl. Catal., B 2020, 260, 118152.
[82] Liu, S.; Sang, X.; Wang, L.; Zhang, J.; Song, J.; Han, B. Electrochim. Acta 2017, 257, 243.

[83] Zhang, B.; Cao, Y.; Li, Z.; Wu, H.; Yin, Y.; Cao, L.; He, X.; Jiang, Z. Electrochim. Acta 2017, 240, 186.
[84] Wu, B.; Lin, X.; Ge, L.; Wu, L.; Xu, T. Chem. Commun. 2013, 49, 143.
[85] Liu, W.; Wang, S.; Xiao, M.; Han, D.; Meng, Y. Chem. Commun. 2012, 48, 3415.
[86] Liu, X.; Yang, Z.; Zhang, Y.; Li, C.; Dong, J.; Liu, Y.; Cheng, H. Int. J. Hydrogen Energy 2017, 42, 10275.
[87] Wu, B.; Pan, J.; Ge, L.; Wu, L.; Wang, H.; Xu, T. Sci. Rep. 2014, 4, 4334.
[88] Choi, B. G.; Huh, Y. S.; Park, Y. C.; Jung, D. H.; Hong, W. H.; Park, H. Carbon 2012, 50, 5395.
[89] Enotiadis, A.; Angjeli, K.; Baldino, N.; Nicotera, I.; Gournis, D. Small 2012, 8, 3338.
[90] Wu, B. Ph.D. Dissertation, University of Science and Technology of China, Hefei, 2015 (in Chinese). (伍斌, 博士论文, 中国科学技术大学, 合肥, 2015).
[91] Sun, H.; Tang, B.; Wu, P. ACS Appl. Mater. Interfaces 2017, 9, 26077.
[92] Ahmadian-Alam, L.; Mahdavi, H. Renew. Energ. 2018, 126, 630.
Outlines

/