Review

Progress in Carbon Dots from the Perspective of Quantum Dots

  • Liu Yanhong ,
  • Zhang Dongxu ,
  • Mao Baodong ,
  • Huang Hui ,
  • Liu Yang ,
  • Tan Huaqiao ,
  • Kang Zhenhui
Expand
  • a Institute of Green Chemistry & Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China;
    b Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China;
    c Institute of Advanced Materials, Northeast Normal University, Changchun 130024, China

Received date: 2020-07-10

  Online published: 2020-08-26

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21908081, 21501072, 51972216, 51725204, 21771132, 52041202 ), the National MCF Energy R&D Program (No. 2018YFE0306105), Innovative Research Group Project of the National Natural Science Foundation of China (No. 51821002), Natural Science Foundation of Jiangsu Province (Nos. BK20190041 and BK20150489), Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the 111 Project.

Abstract

Carbon dots (CDots) not only possess the characteristics of strong luminescence and small size similar to traditional quantum dots, but also show the advantages of good water dispersibility and biocompatibility beyond traditional quantum dots. As an emerging branch of the quantum dots family, the structure, synthetic chemistry and photoelectric properties of CDots are quite different from those of traditional quantum dots, which also provide new opportunities and challenges for the development of quantum dots. With the rapid development and deepening of the field of CDots, it is more and more necessary to compare them with traditional quantum dots on some basic concepts, and to clarify the unique characteristics and key challenges of CDots from the view of traditional quantum dots. In this review, we focus on the aspects of basic structure, synthetic chemistry, optical properties and application research, in an effort to reexamine the research progress and challenges in CDots from the view of fundamental concepts of traditional quantum dots.

Cite this article

Liu Yanhong , Zhang Dongxu , Mao Baodong , Huang Hui , Liu Yang , Tan Huaqiao , Kang Zhenhui . Progress in Carbon Dots from the Perspective of Quantum Dots[J]. Acta Chimica Sinica, 2020 , 78(12) : 1349 -1365 . DOI: 10.6023/A20060274

References

[1] Brus,L. E. J. Chem. Phys. 1984, 80, 4403.
[2] Gaponenko, S. V. Optical Properties of Semiconductor Nanoparticles, Cambridge University Press, Cambridge, UK, 1998.
[3] Klimov, V. I. Nanocrystal Quantum Dots, 2nd ed., CRC Press, 2010.
[4] Alivisatos, A. P. Science 1996, 271, 933.
[5] Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025.
[6] Pietryga, J. M.; Park, Y.-S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Chem. Rev. 2016, 116, 10513.
[7] Wegner, K. D.; Hildebrandt, N. Chem. Soc. Rev. 2015, 44, 4792.
[8] Howes, P. D.; Chandrawati, R.; Stevens, M. M. Science 2014, 346, 1247390.
[9] Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Science 2016, 353, aac5523.
[10] Lim, S. Y.; Shen, W.; Gao, Z. Chem. Soc. Rev. 2015, 44, 362.
[11] Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B. Chem. Rev. 2016, 116, 10934.
[12] Wang, X.; Sun, G.; Li, N.; Chen, P. Chem. Soc. Rev. 2016, 45, 2239.
[13] Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. J. Am. Chem. Soc. 2004, 126, 12736.
[14] Xia, C. L.; Zhu, S. J.; Feng, T. L.; Yang, M. X.; Yang, B. Adv. Sci. 2019, 6, 1901316.
[15] Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; Luo, P. G.; Yang, H.; Kose, M. E.; Chen, B.; Veca, L. M.; Xie, S.-Y. J. Am. Chem. Soc. 2006, 128, 7756.
[16] Cao, L.; Wang, X.; Meziani, M. J.; Wang, F.; Lu. H.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; Xie, S.-Y.; Sun, Y.-P. J. Am. Chem. Soc. 2007, 129, 11318.
[17] Zhou, J.; Booker, C.; Li, R.; Zhou, X.; Sham, T.-K.; Sun, X.; Ding, Z. J. Am. Chem. Soc. 2007, 129, 744.
[18] Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Georgakilas, V.; Giannelis, E. P. Chem. Mater. 2008, 20, 4539.
[19] Baker, S. N.; Baker, G. A. Angew. Chem. Int. Ed. 2010, 49, 6726.
[20] Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H. A.; Yang, X.; Lee, S.-T. Angew. Chem. Int. Ed. 2010, 49, 4430.
[21] Hu, C.; Li, M.; Qiu, J.; Sun, Y. P. Chem. Soc. Rev. 2019, 48, 2315.
[22] Arcudi, F.; Dordevic, L.; Prato, M. Acc. Chem. Res. 2019, 52, 2070.
[23] Yao, B.; Huang, H.; Liu, Y.; Kang, Z. Trends Chem. 2019, 1, 235.
[24] Martin, N.; Bodwell, G. Acc. Chem. Res. 2019, 52, 2757.
[25] Liu, Y.; Huang, H.; Cao, W.; Mao, B.; Liu, Y.; Kang, Z. Mater. Chem. Front. 2020, 4, 1586.
[26] Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am.Chem. Soc. 1993, 115, 8706.
[27] Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2001, 123, 183.
[28] Owen, J. Science 2015, 347, 615.
[29] Sowers, K. L.; Swartz, B.; Krauss, T. D. Chem. Mater. 2013, 25, 1351.
[30] Reiss, P.; Carrière, M.; Lincheneau, C.; Vaure, L.; Tamang, S.; Chem. Rev. 2016, 116, 10731.
[31] Cayuela, A.; Soriano, M. L.; Carrillo-Carrion, C.; Valcarcel, M. Chem. Commun. 2016, 52, 1311.
[32] Rakovich, A.; Rakovich, T. J. Mater. Chem. B 2018, 6, 2690.
[33] Rossetti, R.; Nakahara, S.; Brus, L. E. J. Chem. Phys. 1983, 79, 1086.
[34] Brus, L. J. Chem. Phys. 1983, 79, 5566.
[35] Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013.
[36] Chan, W. C. W.; Nie, S. Science 1998, 281, 2016.
[37] Kelarakis, A. Curr. Opin. Colloid Interface Sci. 2015, 20, 354.
[38] Xia, C.; Zhu, S.; Feng, T.; Yang, M.; Yang, B. Adv. Sci. 2019, 6, 1901316.
[39] Bhattacharyya, S.; Ehrat, F.; Urban, P.; Teves, R.; Wyrwich, R.; Doblinger, M.; Feldmann, J.; Urban, A. S.; Stolarczyk, J. K. Nat. Commun. 2017, 8, 1401.
[40] Dordevic, L.; Arcudi, F.; D'Urso, A.; Cacioppo, M.; Micali, N.; Buergi, T.; Purrello, R.; Prato, M. Nat. Commun. 2018, 9, 3442.
[41] Yuan, F.; Yuan, T.; Sui, L.; Wang, Z.; Xi, Z.; Li, Y.; Li, X.; Fan, L.; Tan, Z. A.; Chen, A.; Jin, M.; Yang, S. Nat. Commun. 2018, 9, 2249.
[42] Lim, S. Y.; Shen, W.; Gao, Z. Chem. Soc. Rev. 2015, 44, 362.
[43] Gan, Z.; Xu, H.; Hao, Y. Nanoscale 2016, 8, 7794.
[44] Xu, Q.; Kuang, T.; Liu, Y.; Cai, L.; Peng, X.; Sreenivasan Sreeprasad, T.; Zhao, P.; Yu, Z.; Li, N. J. Mater. Chem. B 2016, 4, 7204.
[45] Scher, E. C.; Manna, L.; Alivisatos, A. P. Philos. Trans. 2003, 361, 241.
[46] Shi, R.; Dai, X.; Li, W.; Lu, F.; Liu, Y.; Qu, H.; Li, H.; Chen, Q.; Tian, H.; Wu, E.; Wang, Y.; Zhou, R.; Lee, S.-T.; Lifshitz, Y.; Kang, Z.; Liu, J. ACS Nano 2017, 11, 9500.
[47] Boles, M. A.; Ling, D.; Hyeon, T.; Talapin, D. V. Nat. Mater. 2016, 15, 364.
[48] El-Sayed, M. A. Acc. Chem. Res. 2004, 37, 326.
[49] Peng, X. G. Acc. Chem. Res. 2010, 43, 1387.
[50] Regulacio, M. D.; Han, M.-Y. Acc. Chem. Res. 2010, 43, 621.
[51] Smith, A. M.; Nie, S. Acc. Chem. Res. 2010, 43, 190.
[52] Nirmal, M.; Brus, L. Acc. Chem. Res. 1999, 32, 407.
[53] Boles, M. A.; Engel, M.; Talapin, D. V. Chem. Rev. 2016, 116, 11220.
[54] Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X. Chem. Commun. 2009, 5118.
[55] Li, H.; Kang, Z.; Liu, Y.; Lee, S.-T. J. Mater. Chem. 2012, 22, 24230.
[56] Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L. B.; Zhan, X.; Gao, G.; Vithayathil, S. A.; Kaipparettu, B. A.; Marti, A. A.; Hayashi, T.; Zhu, J.-J.; Ajayan, P. M. Nano Lett. 2012, 12, 844.
[57] Zhang, Z.; Zhang, J.; Chen, N.; Qu, L. Energy Environ. Sci. 2012, 5, 8869.
[58] Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P. Small 2008, 4, 455.
[59] Zhu, S.; Zhang, J.; Tang, S.; Qiao, C.; Wang, L.; Wang, H.; Liu, X.; Li, B.; Li, Y.; Yu, W.; Wang, X.; Sun, H.; Yang, B. Adv. Funct. Mater. 2012, 22, 4732.
[60] Ding, C.; Zhu, A.; Tian, Y. Acc. Chem. Res. 2014, 47, 20.
[61] Liu, W.; Li, C.; Ren, Y.; Sun, X.; Pan, W.; Li, Y.; Wang, J.; Wang, W. J. Mater. Chem. B 2016, 4, 5772.
[62] Li, L.; Dong, T. J. Mater. Chem. C 2018, 6, 7944.
[63] Wang, X.-Y.; Yao, X.; Narita, A.; Muellen, K. Acc. Chem. Res. 2019, 52, 2491.
[64] Pozo, I.; Guitian, E.; Perez, D.; Pena, D. Acc. Chem. Res. 2019, 52, 2472.
[65] Fu, M.; Ehrat, F.; Wang, Y.; Milowska, K. Z.; Reckmeier, C.; Rogach, A. L.; Stolarczyk, J. K.; Urban, A. S.; Feldmann, J. Nano Lett. 2015, 15, 6030.
[66] Wang, X.-Y.; Yao, X.; Muellen, K. Sci. China:Chem. 2019, 62, 1099.
[67] Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Chem. Rev. 2015, 115, 4744.
[68] Kwon, S. G.; Hyeon, T. Small 2011, 7, 2685.
[69] Jing, L.; Kershaw, S. V.; Li, Y.; Huang, X.; Li, Y.; Rogach, A. L.; Gao, M. Chem. Rev. 2016, 116, 10623.
[70] De Trizio, L.; Manna, L. Chem. Rev. 2016, 116, 10852.
[71] Reiss, H. J. Chem. Phys. 2004, 19, 482.
[72] Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59.
[73] LaMer, V. K.; Dinegar, R. H. J. Am. Chem. Soc. 1950, 72, 4847.
[74] Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Angew. Chem. Int. Ed. 2007, 46, 4630.
[75] Ostwald, W. Z. Phys. Chem. 2017, 22, 289.
[76] Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.; Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P. Science 2012, 336, 61.
[77] Woehl, T. J.; Evans, J. E.; Arslan, L.; Ristenpart, W. D.; Browning, N. D. ACS Nano 2012, 6, 8599.
[78] Sun, Y.; Ren, Y. Part. Part. Syst. Charact. 2013, 30, 399.
[79] Liu, Q.; Li, Z.; Okasinski, J. S.; Ren, Y.; Sun, Y. J. Mater. Chem. C 2015, 3, 7492.
[80] Zheng, L.; Chi, Y.; Dong, Y.; Lin, J.; Wang, B. J. Am. Chem. Soc. 2009, 131, 4564.
[81] Liu, H.; Ye, T.; Mao, C. Angew. Chem., Int. Ed. 2007, 46, 6473.
[82] Hu, S.; Trinchi, A.; Atkin, P.; Cole, I. Angew. Chem., Int. Ed. 2015, 54, 2970.
[83] Li, F.; Li, Y.; Yang, X.; Han, X.; Jiao, Y.; Wei, T.; Yang, D.; Xu, H.; Nie, G. Angew. Chem., Int. Ed. 2018, 57, 2377.
[84] Yang, S.; Li, W.; Ye, C.; Wang, G.; Tian, H.; Zhu, C.; He, P.; Ding, G.; Xie, X.; Liu, Y.; Lifshitz, Y.; Lee, S.-T.; Kang, Z.; Jiang, M. Adv. Mater. 2017, 29, 1605625.
[85] Dordevic, L.; Arcudi, F.; Prato, M. Nat. Protoc. 2019, 14, 2931.
[86] Verma, N. C.; Yadav, A.; Nandi, C. K. Nat. Commun. 2019, 10, 2391.
[87] Miao, X.; Qu, D.; Yang, D.; Nie, B.; Zhao, Y.; Fan, H.; Sun, Z. Adv. Mater. 2018, 30, 1704740.
[88] Zhang, J.; Yuan, Y.; Liang, G.; Yu, S.-H. Adv. Sci. 2015, 2, 1500002.
[89] Jiang, K.; Wang, Y.; Gao, X.; Cai, C.; Lin, H. Angew. Chem. Int. Ed. 2018, 57, 6216.
[90] Ming, H.; Ma, Z.; Liu, Y.; Pan, K.; Yu, H.; Wang, F.; Kang, Z. Dalton Trans. 2012, 41, 9526.
[91] Zhang, J.; Yu, S.-H. Mater. Today 2016, 19, 382.
[92] Stark, W. J.; Stoessel, P. R.; Wohlleben, W.; Hafner, A. Chem. Soc. Rev. 2015, 44, 5793.
[93] Zhang, L.; Xia, Y. Adv. Mater. 2014, 26, 2600.
[94] Pu, Y.; Cai, F.; Wang, D.; Wang, J.-X.; Chen, J.-F. Ind. Eng. Chem. Res. 2018, 57, 1790.
[95] Morris-Cohen, A. J.; Donakowski, M. D.; Knowles, K. E.; Weiss, E. A. J. Phys. Chem. C 2010, 114, 897.
[96] Munro, A. M.; Plante, I. Jen-La; Ng, M. S.; Ginger, D. S. J. Phys. Chem. C 2007, 111, 6220.
[97] Cao, W.; Qin, Y.; Huang, H.; Mao, B.; Liu, Y.; Kang, Z. ACS Sustainable Chem. Eng. 2019, 7, 20043.
[98] Yu, P. R.; Beard, M. C.; Ellingson, R. J.; Ferrere, S.; Curtis, C.; Drexler, J.; Luiszer, F.; Nozik, A. J. J. Phys. Chem. B 2005, 109, 7084.
[99] Hassinen, A.; Moreels, I.; De Nolf, K.; Smet, P. F.; Martins, J. C.; Hens, Z. J. Am. Chem. Soc. 2012, 134, 20705.
[100] Dong, Y.; Pang, H.; Yang, H. B.; Guo, C.; Shao, J.; Chi, Y.; Li, C. M.; Yu, T. Angew. Chem. Int. Ed. 2013, 52, 7800.
[101] Arcudi, F.; Dordevic, L.; Prato, M. Angew. Chem. Int. Ed. 2016, 55, 2107.
[102] Deng, L.; Wang, X.; Kuang, Y.; Wang, C.; Luo, L.; Wang, F.; Sun, X. Nano Res. 2015, 8, 2810.
[103] Zhou, J.; Yang, Y.; Zhang, C. Y. Chem. Rev. 2015, 115, 11669.
[104] Chen, B.; Pradhan, N.; Zhong, H. J. Phys. Chem. Lett. 2018, 9, 435.
[105] Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Chem. Mater. 2003, 15, 2854.
[106] Zhou, J.; Zhu, M.; Meng, R.; Qin, H.; Peng, X. J. Am. Chem. Soc. 2017, 139, 16556.
[107] Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. Nat. Mater. 2013, 12, 445.
[108] Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2010, 110, 389.
[109] Chuang, C. H.; Burda, C. J. Phys. Chem. Lett. 2012, 3, 1921.
[110] Wheeler, D. A.; Zhang, J. Z. Adv. Mater. 2013, 25, 2878.
[111] Mao, B.; Chuang, C. H.; Lu, F.; Sang, L.; Zhu, J.; Burda, C. J. Phys. Chem. C 2013, 117, 648.
[112] Mao, B.; Chuang, C. H.; McCleese, C.; Zhu, J.; Burda, C. J. Phys. Chem. C 2014, 118, 13883.
[113] Mao, B.; Chuang, C. H.; Wang, J.; Burda, C. J. Phys. Chem. C 2011, 115, 8945.
[114] Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C. Chem. Rev. 2010, 110, 6873.
[115] Cordones, A. A.; Leone, S. R. Chem. Soc. Rev. 2013, 42, 3209.
[116] Efros, A. L.; Nesbitt, D. J. Nat. Nanotechnol. 2016, 11, 661.
[117] Song, S. Y.; Liu, K. K.; Wei, J. Y.; Lou, Q.; Shang, Y.; Shan, C. X. Nano Lett. 2019, 19, 5553.
[118] Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E. P.; Zboril, R.; Rogach, A. L. Nano Today 2014, 9, 590.
[119] Li, D.; Jing, P.; Sun, L.; An, Y.; Shan, X.; Lu, X.; Zhou, D.; Han, D.; Shen, D.; Zhai, Y.; Qu, S.; Zboril, R.; Rogach, A. L. Adv. Mater. 2018, 30, 1705913.
[120] Liu, K. K.; Song, S. Y.; Sui, L. Z.; Wu, S. X.; Jing, P. T.; Wang, R. Q.; Li, Q. Y.; Wu, G. R.; Zhang, Z. Z.; Yuan, K. J.; Shan, C. X. Adv. Sci. 2019, 6, 1900766.
[121] Zhu, Z.; Zhai, Y.; Li, Z.; Zhu, P.; Mao, S.; Zhu, C.; Du, D.; Belfiore, L. A.; Tang, J.; Lin, Y. Mater. Today 2019, 30, 52.
[122] Lan, M.; Zhao, S.; Zhang, Z.; Yan, L.; Guo, L.; Niu, G.; Zhang, J.; Zhao, J.; Zhang, H.; Wang, P.; Zhu, G.; Lee, C. S.; Zhang, W. Nano Res. 2017, 10, 3113.
[123] Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.; Cai, C.; Lin, H. Angew. Chem. Int. Ed. 2015, 54, 5360.
[124] Xiong, Y.; Schneider, J.; Ushakova, E. V.; Rogach, A. L. Nano Today 2018, 23, 124.
[125] Bao, L.; Zhang, Z. L.; Tian, Z. Q.; Zhang, L.; Liu, C.; Lin, Y.; Qi, B.; Pang, D. W. Adv. Mater. 2011, 23, 5801.
[126] Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. ACS Nano 2016, 10, 484.
[127] Xia, C.; Wu, W.; Yu, T.; Xie, X.; Van Oversteeg, C.; Gerritsen, H. C.; Donega, C. D. M. ACS Nano 2018, 12, 8350.
[128] Gan, Z.; Wu, X.; Zhou, G.; Shen, J.; Chu, P. K. Adv. Opt. Mater. 2013, 1, 554.
[129] Yadav, A.; Bai, L.; Yang, Y.; Liu, J.; Kaushik, A.; Cheng, G. J.; Jiang, L.; Chi, L.; Kang, Z. Nanoscale 2017, 9, 5049.
[130] Jiang, K.; Gao, X.; Feng, X.; Wang, Y.; Li, Z.; Lin, H. Angew. Chem. Int. Ed. 2020, 59, 1263.
[131] Yang, H.; Liu, Y.; Guo, Z.; Lei, B.; Zhuang, J.; Zhang, X.; Liu, Z.; Hu, C. Nat. Commun. 2019, 10, 1789.
[132] Scholes, G. D.; Rumbles, G. Nat. Mater. 2006, 5, 683.
[133] Das, S. K.; Liu, Y.; Yeom, S.; Kim, D. Y.; Richards, C. I. Nano Lett. 2014, 14, 620.
[134] Cadranel, A.; Margraf, J. T.; Strauss, V.; Clark, T.; Guldi, D. M.; Acc. Chem. Res. 2019, 52, 955.
[135] Vallan, L.; Canton-Vitoria, R.; Gobeze, H. B.; Jang, Y.; Arenal, R.; Benito, A. M.; Maser, W. K.; D'Souza, F.; Tagmatarchis, N. J. Am. Chem. Soc. 2018, 140, 13488.
[136] Strauss, V.; Margraf, J. T.; Dolle, C.; Butz, B.; Nacken, T. J.; Walter, J.; Bauer, W.; Peukert, W.; Spiecker, E.; Clark, T.; Guldi, D. M. J. Am. Chem. Soc. 2014, 136, 17308.
[137] Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J. J. Nanoscale 2013, 5, 4015.
[138] Tang, L.; Ji, R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K. S.; Luk, C. M.; Zeng, S.; Hao, J.; Lau, S. P. ACS Nano 2012, 6, 5102.
[139] Bao, L.; Liu, C.; Zhang, Z. L.; Pang, D. W. Adv. Mater. 2015, 27, 1663.
[140] Yu, H.; Shi, R.; Zhao, Y.; Waterhouse, G. I.; Wu, L. Z.; Tung, C. H.; Zhang, T. Adv. Mater. 2016, 28, 9454.
[141] Yeh, T. F.; Teng, C. Y.; Chen, S. J.; Teng, H. Adv. Mater. 2014, 26, 3297.
[142] Cadranel, A.; Strauss, V.; Margraf, J. T.; Winterfeld, K. A.; Vogl, C.; Dordevic, L.; Arcudi, F.; Hoelzel, H.; Jux, N.; Prato, M.; Guldi, D. M. J. Am. Chem. Soc. 2018, 140, 904.
[143] Arcudi, F.; Strauss, V.; Dordevic, L.; Cadranel, A.; Guldi, D. M.; Prato, M. Angew. Chem. Int. Ed. 2017, 56, 12097.
[144] Dahan, M.; Laurence, T.; Pinaud, F.; Chemla, D. S.; Alivisatos, A. P.; Sauer, M.; Weiss, S. Opt. Lett. 2001, 26, 825.
[145] Grecco, H. E.; Lidke, K. A.; Heintzmann, R.; Lidke, D. S.; Spagnuolo, C.; Martinez, O. E.; Jares-Erijman, E. A.; Jovin, T. M. Microsc. Res. Tech. 2004, 65, 169.
[146] Liu, S. L.; Wang, Z. G.; Zhang, Z. L.; Pang, D. W. Chem. Soc. Rev. 2016, 45, 1211.
[147] Doane, T. L.; Burda, C.; Chem. Soc. Rev. 2012, 41, 2885.
[148] Akerman, M. E.; Chan, W. C. W.; Laakkonen, P.; Bhatia, S. N.; Ruoslahti, E. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 12617.
[149] Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. Science 2002, 298, 1759.
[150] Rieger, S.; Kulkarni, R. P.; Darcy, D.; Fraser, S. E.; Koster, R. W. Dev. Dyn. 2005, 234, 670.
[151] Barroso, M. M. J. Histochem. Cytochem. 2011, 59, 237.
[152] Lidke, K. A.; Rieger, B.; Jovin, T. M.; Heintzmann, R. Opt. Express. 2005, 13, 7052.
[153] De, M.; Ghosh, P. S.; Rotello, V. M. Adv. Mater. 2008, 20, 4225.
[154] Freeman, R.; Willner, I. Chem. Soc. Rev. 2012, 41, 4067.
[155] Wu, P.; Yan, X.-P. Chem. Soc. Rev. 2013, 42, 5489.
[156] Hildebrandt, N.; Spillmann, C. M.; Algar, W. R.; Pons, T.; Stewart, M. H.; Oh, E.; Susumu, K.; Díaz, S. A.; Delehanty, J. B.; Medintz, I. L. Chem. Rev. 2016, 536.
[157] Silvi, S.; Credi, A. Chem. Soc. Rev. 2015, 44, 4275.
[158] Biju, V.; Itoh, T.; Ishikawa, M. Chem. Soc. Rev. 2010, 39, 3031.
[159] Palui, G.; Aldeek, F.; Wang, W.; Mattoussi, H. Chem. Soc. Rev. 2015, 44, 193.
[160] Xu, G.; Zeng, S.; Zhang, B.; Swihart, M. T.; Yong, K.-T.; Prasad, P. N. Chem. Rev. 2016, 116, 12234.
[161] Yu, M. X.; Zheng, J. ACS Nano 2015, 9, 6655.
[162] Yong, K.-T.; Law, W.-C.; Hu, R.; Ye, L.; Liu, L.; Swihart, M. T. Prasad, P. N. Chem. Soc. Rev. 2013, 42, 1236.
[163] Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M. L.; Stroeve, P. Mahmoudi, M. Chem. Soc.Rev. 2012, 41, 2323.
[164] Choi, H. S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi, M. G.; Frangioni, J. V. Nat. Biotechnol. 2007, 25, 1165.
[165] Choi, H. S.; Liu, W.; Liu, F.; Nasr, K.; Misra, P.; Bawendi, M. G.; Frangioni, J. V. Nat. Nanotechnol. 2010, 5, 42.
[166] Bradburne, C. E.; Delehanty, J. B.; Gemmill, K. B.; Mei, B. C.; Mattoussi, H.; Susumu, K.; Blanco-Canosa, J. B.; Dawson, P. E. and Medintz, I. L. Bioconjugate Chem. 2013, 24, 1570.
[167] Hauck, T. S.; Anderson, R. E.; Fischer, H. C.; Newbigging, S. Chan, W. C. W. Small 2010, 6, 138.
[168] Hsieh, Y.-K.; Hsieh, H.-A.; Hsieh, H.-F.; Wang, T.-H.; Ho, C.-C.; Lin, P.-P.; Wang, C.-F. J. Anal. At. Spectrom. 2013, 28, 1396.
[169] Longmire, M.; Choyke, P. L.; Kobayashi, H. Nanomedicine 2008, 3, 703.
[170] Yang, K.; Feng, L.; Shi,X.; Liu, Z. Chem. Soc. Rev. 2013, 42, 530.
[171] Nekoueian, K.; Amiri, M. o.; Sillanpaa, M.; Marken, F.; Boukherroub, R.; Szunerits, S. Chem. Soc. Rev. 2019, 48, 4281.
[172] Panwar, N.; Soehartono, A. M.; Chan, K. K.; Zeng, S.; Xu, G.; Qu, J.; Coquet, P.; Yong, K.-T.; Chen, X. Chem. Rev. 2019, 119, 9559.
[173] Kang, Z. H.; Lee, S. T. Nanoscale 2019, 11, 19214.
[174] Pang, C.; Gong, Y. J. Agric. Food Chem. 2019, 67, 7561.
[175] Shi, X.; Wei, W.; Fu, Z.; Gao, W.; Zhang, C.; Zhao, Q.; Deng, F.; Lu, X. Talanta 2019, 194, 809.
[176] Dong, Y.; Cai, J.; You, X.; Chi, Y. Analyst, 2015, 140,7468.
[177] Yang, S.-T.; Cao, L.; Luo, P. G.; Lu, F.; Wang, X.; Wang, H.; Meziani, M. J.; Liu, Y.; Qi, G.; Sun, Y.-P. J. Am. Chem. Soc. 2009, 131,11308.
[178] Yang, S.-T.; Wang, X.; Wang, H.; Lu, F.; Luo, P. G.; Cao, L.; Meziani, M. J.; Liu, J.-H.; Liu, Y.; Chen, M.; Huang, Y.; Sun, Y.-P. J. Phys. Chem. C 2009, 113, 18110.
[179] Ge, J.; Lan, M.; Zhou, B.; Liu, W.; Guo, L.; Wang, H.; Jia, Q.; Niu, G.; Huang, X.; Zhou, H.; Meng, X.; Wang, P.; Lee, C.-S.; Zhang, W.; Han, X. Nat. Commun. 2014, 5, 4596.
[180] Du, J.; Xu, N.; Fan, J.; Sun, W.; Peng, X. Small 2019, e1805087.
[181] Li, H.; Huang, J.; Song, Y.; Zhang, M.; Wang, H.; Lu, F.; Huang, H.; Liu, Y.; Dai, X.; Gu, Z.; Yang, Z.; Zhou, R.; Kang, Z. ACS Appl. Mater. Interfaces 2018, 10, 26936.
[182] Xin, Q.; Shah, H.; Nawaz, A.; Xie, W.; Akram, M. Z.; Batool, A.; Tian, L.; Jan, S. U.; Boddula, R.; Guo, B.; Liu, Q.; Gong, J. R. Adv. Mater. 2019, 31, 1804838.
[183] Devi, P.; Saini, S.; Kim, K.-H. Biosens. Bioelectron. 2019, 141, 111158.
[184] Li, H.; Kong, W.; Liu, J.; Yang, M.; Huang, H.; Liu, Y.; Kang, Z. J. Mater. Chem. B 2014, 2, 5652.
[185] Wang, Y.; Xia, Y. Optical, Mikrochim. Acta 2019, 186, 50.
[186] Garg, B.; Bisht, T. Molecules 2016, 21, 1653.
[187] Li, H.; Huang, J.; Liu, Y.; Lu, F.; Zhong, J.; Wang, Y.; Li, S.; Lifshitz, Y.; Lee, S.-T.; Kang, Z. Nano Res. 2019, 12, 1585.
[188] Shi, R.; Li, H.; Wu, E.; Xiong, L.; Lv, R.; Guo, R.; Liu, Y.; Xu, G.; Kang, Z.; Liu, J. Nanoscale 2017, 9,8410.
[189] Li, H.; Guo, S.; Li, C.; Huang, H.; Liu, Y.; Kang, Z. ACS Appl. Mater. Interfaces 2015, 7, 10004.
[190] Biju, V. Chem. Soc. Rev. 2014, 43, 744.
[191] Zhang, M.; Wang, H.; Song, Y.; Huang, H.; Shao, M.; Liu, Y.; Li, H.; Kang, Z. ACS Appl. Bio Mater. 2018, 1, 894.
[192] Li, H.; Huang, J.; Lu, F.; Liu, Y.; Song, Y.; Sun, Y.; Zhong, J.; Huang, H.; Wang, Y.; Li, S.; Lifshitz, Y.; Lee, S.-T.; Kang, Z. ACS Appl. Bio Mater. 2018, 1, 663.
[193] Zhang, M.; Hu, L.; Wang, H.; Song, Y.; Liu, Y.; Li, H.; Shao, M.; Huang, H.; Kang, Z. Nanoscale 2018, 10, 12734.
[194] Huang, H.; Yang, S.; Liu, Y.; Yang, Y.; Li, H.; McLeod, J. A.; Ding, G.; Huang, J.; Kang, Z. ACS Appl. Bio Mater. 2019, 2, 5144.
[195] Zhang, M.; Wang, H.; Liu, P.; Song, Y.; Huang, H.; Shao, M.; Liu, Y.; Li, H.; Kang, Z. Environ. Sci.:Nano 2019, 6, 3316.
[196] Nurunnabi, M.; Khatun, Z.; Huh, K. M.; Park, S. Y.; Lee, D. Y.; Cho, K. J.; Lee, Y.-K. ACS Nano 2013, 7, 6858.
[197] Kong, W.; Liu, J.; Liu, R.; Li, H.; Liu, Y.; Huang, H.; Li, K.; Liu, J.; Lee, S.-T.; Kang, Z. Nanoscale 2014, 6, 5116.
[198] Kim, T. H.; Sirdaarta, J. P.; Zhang, Q.; Eftekhari, E.; John, J. S.; Kennedy, D.; Cock, I. E.; Li, Q. Nano Res. 2018, 11, 2204.
[199] Roy, P.; Periasamy, A. P.; Lin, C.-Y.; Her, G.-M.; Chiu, W.-J.; C.-L. Shu, C.-L. Li.; Huang, C.-C.; Liang, C.-T.; Chang, H.-T. Nanoscale 2015, 7, 2504.
[200] Qin, Y.; Zhou, Z.-W.; Pan, S.-T.; He, Z.-X.; Zhang, X.; Qiu, J.-X.; Duan, W.; Yang, T.; Zhou, S.-F. Toxicology 2015, 327, 62.
[201] Chandra, A.; Deshpande, S.; Shinde, D. B.; Pillai, V. K.; Singh, N. ACS Macro Lett. 2014, 3, 1064.
[202] Segawa, Y.; Levine D. R.; Itami, K. Acc. Chem. Res. 2019, 52, 2760.
[203] Rim, Y. S.; Bae, S. H.; J. Chen, H.; De Marco, N.; Yang, Y. Adv. Mater. 2016, 28, 4415.
[204] Jang, E.; Jun, S.; Jang, H.; Llim, J.; Kim, B.; Kim, Y. Adv. Mater. 2010, 22, 3076.
[205] Zhu, H.; Yang Y.; Lian, T. Acc. Chem. Res. 2013, 46, 1270.
[206] McGuire, J. A.; Joo, J.; Pietryga, J. M.; Schaller, R. D.; Klimov, V. I. Acc. Chem. Res. 2008, 41, 1810.
[207] Vanmaekelbergh, D.; Liljeroth, P.; Chem. Soc. Rev. 2005, 34, 299.
Outlines

/