Acta Chimica Sinica ›› 2020, Vol. 78 ›› Issue (12): 1349-1365.DOI: 10.6023/A20060274 Previous Articles Next Articles
Review
刘艳红a, 张东旭a, 毛宝东a, 黄慧b, 刘阳b, 谭华桥c, 康振辉b,c
投稿日期:
2020-07-10
发布日期:
2020-08-26
通讯作者:
毛宝东, 黄慧, 刘阳, 康振辉
E-mail:maobd@ujs.edu.cn;hhuang0618@suda.edu.cn;yangl@suda.edu.cn;zhkang@suda.edu.cn
作者简介:
刘艳红,女,江苏大学化学与化工学院助理研究员.主要从事基于量子点和二维材料的复合纳米结构的设计、制备及催化应用.基金资助:
Liu Yanhonga, Zhang Dongxua, Mao Baodonga, Huang Huib, Liu Yangb, Tan Huaqiaoc, Kang Zhenhuib,c
Received:
2020-07-10
Published:
2020-08-26
Supported by:
Share
Liu Yanhong, Zhang Dongxu, Mao Baodong, Huang Hui, Liu Yang, Tan Huaqiao, Kang Zhenhui. Progress in Carbon Dots from the Perspective of Quantum Dots[J]. Acta Chimica Sinica, 2020, 78(12): 1349-1365.
[1] Brus,L. E. J. Chem. Phys. 1984, 80, 4403. [2] Gaponenko, S. V. Optical Properties of Semiconductor Nanoparticles, Cambridge University Press, Cambridge, UK, 1998. [3] Klimov, V. I. Nanocrystal Quantum Dots, 2nd ed., CRC Press, 2010. [4] Alivisatos, A. P. Science 1996, 271, 933. [5] Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025. [6] Pietryga, J. M.; Park, Y.-S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Chem. Rev. 2016, 116, 10513. [7] Wegner, K. D.; Hildebrandt, N. Chem. Soc. Rev. 2015, 44, 4792. [8] Howes, P. D.; Chandrawati, R.; Stevens, M. M. Science 2014, 346, 1247390. [9] Kagan, C. R.; Lifshitz, E.; Sargent, E. H.; Talapin, D. V. Science 2016, 353, aac5523. [10] Lim, S. Y.; Shen, W.; Gao, Z. Chem. Soc. Rev. 2015, 44, 362. [11] Nasilowski, M.; Mahler, B.; Lhuillier, E.; Ithurria, S.; Dubertret, B. Chem. Rev. 2016, 116, 10934. [12] Wang, X.; Sun, G.; Li, N.; Chen, P. Chem. Soc. Rev. 2016, 45, 2239. [13] Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. J. Am. Chem. Soc. 2004, 126, 12736. [14] Xia, C. L.; Zhu, S. J.; Feng, T. L.; Yang, M. X.; Yang, B. Adv. Sci. 2019, 6, 1901316. [15] Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; Luo, P. G.; Yang, H.; Kose, M. E.; Chen, B.; Veca, L. M.; Xie, S.-Y. J. Am. Chem. Soc. 2006, 128, 7756. [16] Cao, L.; Wang, X.; Meziani, M. J.; Wang, F.; Lu. H.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; Xie, S.-Y.; Sun, Y.-P. J. Am. Chem. Soc. 2007, 129, 11318. [17] Zhou, J.; Booker, C.; Li, R.; Zhou, X.; Sham, T.-K.; Sun, X.; Ding, Z. J. Am. Chem. Soc. 2007, 129, 744. [18] Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Georgakilas, V.; Giannelis, E. P. Chem. Mater. 2008, 20, 4539. [19] Baker, S. N.; Baker, G. A. Angew. Chem. Int. Ed. 2010, 49, 6726. [20] Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H. A.; Yang, X.; Lee, S.-T. Angew. Chem. Int. Ed. 2010, 49, 4430. [21] Hu, C.; Li, M.; Qiu, J.; Sun, Y. P. Chem. Soc. Rev. 2019, 48, 2315. [22] Arcudi, F.; Dordevic, L.; Prato, M. Acc. Chem. Res. 2019, 52, 2070. [23] Yao, B.; Huang, H.; Liu, Y.; Kang, Z. Trends Chem. 2019, 1, 235. [24] Martin, N.; Bodwell, G. Acc. Chem. Res. 2019, 52, 2757. [25] Liu, Y.; Huang, H.; Cao, W.; Mao, B.; Liu, Y.; Kang, Z. Mater. Chem. Front. 2020, 4, 1586. [26] Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am.Chem. Soc. 1993, 115, 8706. [27] Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2001, 123, 183. [28] Owen, J. Science 2015, 347, 615. [29] Sowers, K. L.; Swartz, B.; Krauss, T. D. Chem. Mater. 2013, 25, 1351. [30] Reiss, P.; Carrière, M.; Lincheneau, C.; Vaure, L.; Tamang, S.; Chem. Rev. 2016, 116, 10731. [31] Cayuela, A.; Soriano, M. L.; Carrillo-Carrion, C.; Valcarcel, M. Chem. Commun. 2016, 52, 1311. [32] Rakovich, A.; Rakovich, T. J. Mater. Chem. B 2018, 6, 2690. [33] Rossetti, R.; Nakahara, S.; Brus, L. E. J. Chem. Phys. 1983, 79, 1086. [34] Brus, L. J. Chem. Phys. 1983, 79, 5566. [35] Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013. [36] Chan, W. C. W.; Nie, S. Science 1998, 281, 2016. [37] Kelarakis, A. Curr. Opin. Colloid Interface Sci. 2015, 20, 354. [38] Xia, C.; Zhu, S.; Feng, T.; Yang, M.; Yang, B. Adv. Sci. 2019, 6, 1901316. [39] Bhattacharyya, S.; Ehrat, F.; Urban, P.; Teves, R.; Wyrwich, R.; Doblinger, M.; Feldmann, J.; Urban, A. S.; Stolarczyk, J. K. Nat. Commun. 2017, 8, 1401. [40] Dordevic, L.; Arcudi, F.; D'Urso, A.; Cacioppo, M.; Micali, N.; Buergi, T.; Purrello, R.; Prato, M. Nat. Commun. 2018, 9, 3442. [41] Yuan, F.; Yuan, T.; Sui, L.; Wang, Z.; Xi, Z.; Li, Y.; Li, X.; Fan, L.; Tan, Z. A.; Chen, A.; Jin, M.; Yang, S. Nat. Commun. 2018, 9, 2249. [42] Lim, S. Y.; Shen, W.; Gao, Z. Chem. Soc. Rev. 2015, 44, 362. [43] Gan, Z.; Xu, H.; Hao, Y. Nanoscale 2016, 8, 7794. [44] Xu, Q.; Kuang, T.; Liu, Y.; Cai, L.; Peng, X.; Sreenivasan Sreeprasad, T.; Zhao, P.; Yu, Z.; Li, N. J. Mater. Chem. B 2016, 4, 7204. [45] Scher, E. C.; Manna, L.; Alivisatos, A. P. Philos. Trans. 2003, 361, 241. [46] Shi, R.; Dai, X.; Li, W.; Lu, F.; Liu, Y.; Qu, H.; Li, H.; Chen, Q.; Tian, H.; Wu, E.; Wang, Y.; Zhou, R.; Lee, S.-T.; Lifshitz, Y.; Kang, Z.; Liu, J. ACS Nano 2017, 11, 9500. [47] Boles, M. A.; Ling, D.; Hyeon, T.; Talapin, D. V. Nat. Mater. 2016, 15, 364. [48] El-Sayed, M. A. Acc. Chem. Res. 2004, 37, 326. [49] Peng, X. G. Acc. Chem. Res. 2010, 43, 1387. [50] Regulacio, M. D.; Han, M.-Y. Acc. Chem. Res. 2010, 43, 621. [51] Smith, A. M.; Nie, S. Acc. Chem. Res. 2010, 43, 190. [52] Nirmal, M.; Brus, L. Acc. Chem. Res. 1999, 32, 407. [53] Boles, M. A.; Engel, M.; Talapin, D. V. Chem. Rev. 2016, 116, 11220. [54] Zhu, H.; Wang, X.; Li, Y.; Wang, Z.; Yang, F.; Yang, X. Chem. Commun. 2009, 5118. [55] Li, H.; Kang, Z.; Liu, Y.; Lee, S.-T. J. Mater. Chem. 2012, 22, 24230. [56] Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Romero-Aburto, R.; Ge, L.; Song, L.; Alemany, L. B.; Zhan, X.; Gao, G.; Vithayathil, S. A.; Kaipparettu, B. A.; Marti, A. A.; Hayashi, T.; Zhu, J.-J.; Ajayan, P. M. Nano Lett. 2012, 12, 844. [57] Zhang, Z.; Zhang, J.; Chen, N.; Qu, L. Energy Environ. Sci. 2012, 5, 8869. [58] Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P. Small 2008, 4, 455. [59] Zhu, S.; Zhang, J.; Tang, S.; Qiao, C.; Wang, L.; Wang, H.; Liu, X.; Li, B.; Li, Y.; Yu, W.; Wang, X.; Sun, H.; Yang, B. Adv. Funct. Mater. 2012, 22, 4732. [60] Ding, C.; Zhu, A.; Tian, Y. Acc. Chem. Res. 2014, 47, 20. [61] Liu, W.; Li, C.; Ren, Y.; Sun, X.; Pan, W.; Li, Y.; Wang, J.; Wang, W. J. Mater. Chem. B 2016, 4, 5772. [62] Li, L.; Dong, T. J. Mater. Chem. C 2018, 6, 7944. [63] Wang, X.-Y.; Yao, X.; Narita, A.; Muellen, K. Acc. Chem. Res. 2019, 52, 2491. [64] Pozo, I.; Guitian, E.; Perez, D.; Pena, D. Acc. Chem. Res. 2019, 52, 2472. [65] Fu, M.; Ehrat, F.; Wang, Y.; Milowska, K. Z.; Reckmeier, C.; Rogach, A. L.; Stolarczyk, J. K.; Urban, A. S.; Feldmann, J. Nano Lett. 2015, 15, 6030. [66] Wang, X.-Y.; Yao, X.; Muellen, K. Sci. China:Chem. 2019, 62, 1099. [67] Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Chem. Rev. 2015, 115, 4744. [68] Kwon, S. G.; Hyeon, T. Small 2011, 7, 2685. [69] Jing, L.; Kershaw, S. V.; Li, Y.; Huang, X.; Li, Y.; Rogach, A. L.; Gao, M. Chem. Rev. 2016, 116, 10623. [70] De Trizio, L.; Manna, L. Chem. Rev. 2016, 116, 10852. [71] Reiss, H. J. Chem. Phys. 2004, 19, 482. [72] Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59. [73] LaMer, V. K.; Dinegar, R. H. J. Am. Chem. Soc. 1950, 72, 4847. [74] Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Angew. Chem. Int. Ed. 2007, 46, 4630. [75] Ostwald, W. Z. Phys. Chem. 2017, 22, 289. [76] Yuk, J. M.; Park, J.; Ercius, P.; Kim, K.; Hellebusch, D. J.; Crommie, M. F.; Lee, J. Y.; Zettl, A.; Alivisatos, A. P. Science 2012, 336, 61. [77] Woehl, T. J.; Evans, J. E.; Arslan, L.; Ristenpart, W. D.; Browning, N. D. ACS Nano 2012, 6, 8599. [78] Sun, Y.; Ren, Y. Part. Part. Syst. Charact. 2013, 30, 399. [79] Liu, Q.; Li, Z.; Okasinski, J. S.; Ren, Y.; Sun, Y. J. Mater. Chem. C 2015, 3, 7492. [80] Zheng, L.; Chi, Y.; Dong, Y.; Lin, J.; Wang, B. J. Am. Chem. Soc. 2009, 131, 4564. [81] Liu, H.; Ye, T.; Mao, C. Angew. Chem., Int. Ed. 2007, 46, 6473. [82] Hu, S.; Trinchi, A.; Atkin, P.; Cole, I. Angew. Chem., Int. Ed. 2015, 54, 2970. [83] Li, F.; Li, Y.; Yang, X.; Han, X.; Jiao, Y.; Wei, T.; Yang, D.; Xu, H.; Nie, G. Angew. Chem., Int. Ed. 2018, 57, 2377. [84] Yang, S.; Li, W.; Ye, C.; Wang, G.; Tian, H.; Zhu, C.; He, P.; Ding, G.; Xie, X.; Liu, Y.; Lifshitz, Y.; Lee, S.-T.; Kang, Z.; Jiang, M. Adv. Mater. 2017, 29, 1605625. [85] Dordevic, L.; Arcudi, F.; Prato, M. Nat. Protoc. 2019, 14, 2931. [86] Verma, N. C.; Yadav, A.; Nandi, C. K. Nat. Commun. 2019, 10, 2391. [87] Miao, X.; Qu, D.; Yang, D.; Nie, B.; Zhao, Y.; Fan, H.; Sun, Z. Adv. Mater. 2018, 30, 1704740. [88] Zhang, J.; Yuan, Y.; Liang, G.; Yu, S.-H. Adv. Sci. 2015, 2, 1500002. [89] Jiang, K.; Wang, Y.; Gao, X.; Cai, C.; Lin, H. Angew. Chem. Int. Ed. 2018, 57, 6216. [90] Ming, H.; Ma, Z.; Liu, Y.; Pan, K.; Yu, H.; Wang, F.; Kang, Z. Dalton Trans. 2012, 41, 9526. [91] Zhang, J.; Yu, S.-H. Mater. Today 2016, 19, 382. [92] Stark, W. J.; Stoessel, P. R.; Wohlleben, W.; Hafner, A. Chem. Soc. Rev. 2015, 44, 5793. [93] Zhang, L.; Xia, Y. Adv. Mater. 2014, 26, 2600. [94] Pu, Y.; Cai, F.; Wang, D.; Wang, J.-X.; Chen, J.-F. Ind. Eng. Chem. Res. 2018, 57, 1790. [95] Morris-Cohen, A. J.; Donakowski, M. D.; Knowles, K. E.; Weiss, E. A. J. Phys. Chem. C 2010, 114, 897. [96] Munro, A. M.; Plante, I. Jen-La; Ng, M. S.; Ginger, D. S. J. Phys. Chem. C 2007, 111, 6220. [97] Cao, W.; Qin, Y.; Huang, H.; Mao, B.; Liu, Y.; Kang, Z. ACS Sustainable Chem. Eng. 2019, 7, 20043. [98] Yu, P. R.; Beard, M. C.; Ellingson, R. J.; Ferrere, S.; Curtis, C.; Drexler, J.; Luiszer, F.; Nozik, A. J. J. Phys. Chem. B 2005, 109, 7084. [99] Hassinen, A.; Moreels, I.; De Nolf, K.; Smet, P. F.; Martins, J. C.; Hens, Z. J. Am. Chem. Soc. 2012, 134, 20705. [100] Dong, Y.; Pang, H.; Yang, H. B.; Guo, C.; Shao, J.; Chi, Y.; Li, C. M.; Yu, T. Angew. Chem. Int. Ed. 2013, 52, 7800. [101] Arcudi, F.; Dordevic, L.; Prato, M. Angew. Chem. Int. Ed. 2016, 55, 2107. [102] Deng, L.; Wang, X.; Kuang, Y.; Wang, C.; Luo, L.; Wang, F.; Sun, X. Nano Res. 2015, 8, 2810. [103] Zhou, J.; Yang, Y.; Zhang, C. Y. Chem. Rev. 2015, 115, 11669. [104] Chen, B.; Pradhan, N.; Zhong, H. J. Phys. Chem. Lett. 2018, 9, 435. [105] Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Chem. Mater. 2003, 15, 2854. [106] Zhou, J.; Zhu, M.; Meng, R.; Qin, H.; Peng, X. J. Am. Chem. Soc. 2017, 139, 16556. [107] Chen, O.; Zhao, J.; Chauhan, V. P.; Cui, J.; Wong, C.; Harris, D. K.; Wei, H.; Han, H. S.; Fukumura, D.; Jain, R. K.; Bawendi, M. G. Nat. Mater. 2013, 12, 445. [108] Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2010, 110, 389. [109] Chuang, C. H.; Burda, C. J. Phys. Chem. Lett. 2012, 3, 1921. [110] Wheeler, D. A.; Zhang, J. Z. Adv. Mater. 2013, 25, 2878. [111] Mao, B.; Chuang, C. H.; Lu, F.; Sang, L.; Zhu, J.; Burda, C. J. Phys. Chem. C 2013, 117, 648. [112] Mao, B.; Chuang, C. H.; McCleese, C.; Zhu, J.; Burda, C. J. Phys. Chem. C 2014, 118, 13883. [113] Mao, B.; Chuang, C. H.; Wang, J.; Burda, C. J. Phys. Chem. C 2011, 115, 8945. [114] Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C. Chem. Rev. 2010, 110, 6873. [115] Cordones, A. A.; Leone, S. R. Chem. Soc. Rev. 2013, 42, 3209. [116] Efros, A. L.; Nesbitt, D. J. Nat. Nanotechnol. 2016, 11, 661. [117] Song, S. Y.; Liu, K. K.; Wei, J. Y.; Lou, Q.; Shang, Y.; Shan, C. X. Nano Lett. 2019, 19, 5553. [118] Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E. P.; Zboril, R.; Rogach, A. L. Nano Today 2014, 9, 590. [119] Li, D.; Jing, P.; Sun, L.; An, Y.; Shan, X.; Lu, X.; Zhou, D.; Han, D.; Shen, D.; Zhai, Y.; Qu, S.; Zboril, R.; Rogach, A. L. Adv. Mater. 2018, 30, 1705913. [120] Liu, K. K.; Song, S. Y.; Sui, L. Z.; Wu, S. X.; Jing, P. T.; Wang, R. Q.; Li, Q. Y.; Wu, G. R.; Zhang, Z. Z.; Yuan, K. J.; Shan, C. X. Adv. Sci. 2019, 6, 1900766. [121] Zhu, Z.; Zhai, Y.; Li, Z.; Zhu, P.; Mao, S.; Zhu, C.; Du, D.; Belfiore, L. A.; Tang, J.; Lin, Y. Mater. Today 2019, 30, 52. [122] Lan, M.; Zhao, S.; Zhang, Z.; Yan, L.; Guo, L.; Niu, G.; Zhang, J.; Zhao, J.; Zhang, H.; Wang, P.; Zhu, G.; Lee, C. S.; Zhang, W. Nano Res. 2017, 10, 3113. [123] Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A.; Cai, C.; Lin, H. Angew. Chem. Int. Ed. 2015, 54, 5360. [124] Xiong, Y.; Schneider, J.; Ushakova, E. V.; Rogach, A. L. Nano Today 2018, 23, 124. [125] Bao, L.; Zhang, Z. L.; Tian, Z. Q.; Zhang, L.; Liu, C.; Lin, Y.; Qi, B.; Pang, D. W. Adv. Mater. 2011, 23, 5801. [126] Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. ACS Nano 2016, 10, 484. [127] Xia, C.; Wu, W.; Yu, T.; Xie, X.; Van Oversteeg, C.; Gerritsen, H. C.; Donega, C. D. M. ACS Nano 2018, 12, 8350. [128] Gan, Z.; Wu, X.; Zhou, G.; Shen, J.; Chu, P. K. Adv. Opt. Mater. 2013, 1, 554. [129] Yadav, A.; Bai, L.; Yang, Y.; Liu, J.; Kaushik, A.; Cheng, G. J.; Jiang, L.; Chi, L.; Kang, Z. Nanoscale 2017, 9, 5049. [130] Jiang, K.; Gao, X.; Feng, X.; Wang, Y.; Li, Z.; Lin, H. Angew. Chem. Int. Ed. 2020, 59, 1263. [131] Yang, H.; Liu, Y.; Guo, Z.; Lei, B.; Zhuang, J.; Zhang, X.; Liu, Z.; Hu, C. Nat. Commun. 2019, 10, 1789. [132] Scholes, G. D.; Rumbles, G. Nat. Mater. 2006, 5, 683. [133] Das, S. K.; Liu, Y.; Yeom, S.; Kim, D. Y.; Richards, C. I. Nano Lett. 2014, 14, 620. [134] Cadranel, A.; Margraf, J. T.; Strauss, V.; Clark, T.; Guldi, D. M.; Acc. Chem. Res. 2019, 52, 955. [135] Vallan, L.; Canton-Vitoria, R.; Gobeze, H. B.; Jang, Y.; Arenal, R.; Benito, A. M.; Maser, W. K.; D'Souza, F.; Tagmatarchis, N. J. Am. Chem. Soc. 2018, 140, 13488. [136] Strauss, V.; Margraf, J. T.; Dolle, C.; Butz, B.; Nacken, T. J.; Walter, J.; Bauer, W.; Peukert, W.; Spiecker, E.; Clark, T.; Guldi, D. M. J. Am. Chem. Soc. 2014, 136, 17308. [137] Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J. J. Nanoscale 2013, 5, 4015. [138] Tang, L.; Ji, R.; Cao, X.; Lin, J.; Jiang, H.; Li, X.; Teng, K. S.; Luk, C. M.; Zeng, S.; Hao, J.; Lau, S. P. ACS Nano 2012, 6, 5102. [139] Bao, L.; Liu, C.; Zhang, Z. L.; Pang, D. W. Adv. Mater. 2015, 27, 1663. [140] Yu, H.; Shi, R.; Zhao, Y.; Waterhouse, G. I.; Wu, L. Z.; Tung, C. H.; Zhang, T. Adv. Mater. 2016, 28, 9454. [141] Yeh, T. F.; Teng, C. Y.; Chen, S. J.; Teng, H. Adv. Mater. 2014, 26, 3297. [142] Cadranel, A.; Strauss, V.; Margraf, J. T.; Winterfeld, K. A.; Vogl, C.; Dordevic, L.; Arcudi, F.; Hoelzel, H.; Jux, N.; Prato, M.; Guldi, D. M. J. Am. Chem. Soc. 2018, 140, 904. [143] Arcudi, F.; Strauss, V.; Dordevic, L.; Cadranel, A.; Guldi, D. M.; Prato, M. Angew. Chem. Int. Ed. 2017, 56, 12097. [144] Dahan, M.; Laurence, T.; Pinaud, F.; Chemla, D. S.; Alivisatos, A. P.; Sauer, M.; Weiss, S. Opt. Lett. 2001, 26, 825. [145] Grecco, H. E.; Lidke, K. A.; Heintzmann, R.; Lidke, D. S.; Spagnuolo, C.; Martinez, O. E.; Jares-Erijman, E. A.; Jovin, T. M. Microsc. Res. Tech. 2004, 65, 169. [146] Liu, S. L.; Wang, Z. G.; Zhang, Z. L.; Pang, D. W. Chem. Soc. Rev. 2016, 45, 1211. [147] Doane, T. L.; Burda, C.; Chem. Soc. Rev. 2012, 41, 2885. [148] Akerman, M. E.; Chan, W. C. W.; Laakkonen, P.; Bhatia, S. N.; Ruoslahti, E. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 12617. [149] Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. Science 2002, 298, 1759. [150] Rieger, S.; Kulkarni, R. P.; Darcy, D.; Fraser, S. E.; Koster, R. W. Dev. Dyn. 2005, 234, 670. [151] Barroso, M. M. J. Histochem. Cytochem. 2011, 59, 237. [152] Lidke, K. A.; Rieger, B.; Jovin, T. M.; Heintzmann, R. Opt. Express. 2005, 13, 7052. [153] De, M.; Ghosh, P. S.; Rotello, V. M. Adv. Mater. 2008, 20, 4225. [154] Freeman, R.; Willner, I. Chem. Soc. Rev. 2012, 41, 4067. [155] Wu, P.; Yan, X.-P. Chem. Soc. Rev. 2013, 42, 5489. [156] Hildebrandt, N.; Spillmann, C. M.; Algar, W. R.; Pons, T.; Stewart, M. H.; Oh, E.; Susumu, K.; Díaz, S. A.; Delehanty, J. B.; Medintz, I. L. Chem. Rev. 2016, 536. [157] Silvi, S.; Credi, A. Chem. Soc. Rev. 2015, 44, 4275. [158] Biju, V.; Itoh, T.; Ishikawa, M. Chem. Soc. Rev. 2010, 39, 3031. [159] Palui, G.; Aldeek, F.; Wang, W.; Mattoussi, H. Chem. Soc. Rev. 2015, 44, 193. [160] Xu, G.; Zeng, S.; Zhang, B.; Swihart, M. T.; Yong, K.-T.; Prasad, P. N. Chem. Rev. 2016, 116, 12234. [161] Yu, M. X.; Zheng, J. ACS Nano 2015, 9, 6655. [162] Yong, K.-T.; Law, W.-C.; Hu, R.; Ye, L.; Liu, L.; Swihart, M. T. Prasad, P. N. Chem. Soc. Rev. 2013, 42, 1236. [163] Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M. L.; Stroeve, P. Mahmoudi, M. Chem. Soc.Rev. 2012, 41, 2323. [164] Choi, H. S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi, M. G.; Frangioni, J. V. Nat. Biotechnol. 2007, 25, 1165. [165] Choi, H. S.; Liu, W.; Liu, F.; Nasr, K.; Misra, P.; Bawendi, M. G.; Frangioni, J. V. Nat. Nanotechnol. 2010, 5, 42. [166] Bradburne, C. E.; Delehanty, J. B.; Gemmill, K. B.; Mei, B. C.; Mattoussi, H.; Susumu, K.; Blanco-Canosa, J. B.; Dawson, P. E. and Medintz, I. L. Bioconjugate Chem. 2013, 24, 1570. [167] Hauck, T. S.; Anderson, R. E.; Fischer, H. C.; Newbigging, S. Chan, W. C. W. Small 2010, 6, 138. [168] Hsieh, Y.-K.; Hsieh, H.-A.; Hsieh, H.-F.; Wang, T.-H.; Ho, C.-C.; Lin, P.-P.; Wang, C.-F. J. Anal. At. Spectrom. 2013, 28, 1396. [169] Longmire, M.; Choyke, P. L.; Kobayashi, H. Nanomedicine 2008, 3, 703. [170] Yang, K.; Feng, L.; Shi,X.; Liu, Z. Chem. Soc. Rev. 2013, 42, 530. [171] Nekoueian, K.; Amiri, M. o.; Sillanpaa, M.; Marken, F.; Boukherroub, R.; Szunerits, S. Chem. Soc. Rev. 2019, 48, 4281. [172] Panwar, N.; Soehartono, A. M.; Chan, K. K.; Zeng, S.; Xu, G.; Qu, J.; Coquet, P.; Yong, K.-T.; Chen, X. Chem. Rev. 2019, 119, 9559. [173] Kang, Z. H.; Lee, S. T. Nanoscale 2019, 11, 19214. [174] Pang, C.; Gong, Y. J. Agric. Food Chem. 2019, 67, 7561. [175] Shi, X.; Wei, W.; Fu, Z.; Gao, W.; Zhang, C.; Zhao, Q.; Deng, F.; Lu, X. Talanta 2019, 194, 809. [176] Dong, Y.; Cai, J.; You, X.; Chi, Y. Analyst, 2015, 140,7468. [177] Yang, S.-T.; Cao, L.; Luo, P. G.; Lu, F.; Wang, X.; Wang, H.; Meziani, M. J.; Liu, Y.; Qi, G.; Sun, Y.-P. J. Am. Chem. Soc. 2009, 131,11308. [178] Yang, S.-T.; Wang, X.; Wang, H.; Lu, F.; Luo, P. G.; Cao, L.; Meziani, M. J.; Liu, J.-H.; Liu, Y.; Chen, M.; Huang, Y.; Sun, Y.-P. J. Phys. Chem. C 2009, 113, 18110. [179] Ge, J.; Lan, M.; Zhou, B.; Liu, W.; Guo, L.; Wang, H.; Jia, Q.; Niu, G.; Huang, X.; Zhou, H.; Meng, X.; Wang, P.; Lee, C.-S.; Zhang, W.; Han, X. Nat. Commun. 2014, 5, 4596. [180] Du, J.; Xu, N.; Fan, J.; Sun, W.; Peng, X. Small 2019, e1805087. [181] Li, H.; Huang, J.; Song, Y.; Zhang, M.; Wang, H.; Lu, F.; Huang, H.; Liu, Y.; Dai, X.; Gu, Z.; Yang, Z.; Zhou, R.; Kang, Z. ACS Appl. Mater. Interfaces 2018, 10, 26936. [182] Xin, Q.; Shah, H.; Nawaz, A.; Xie, W.; Akram, M. Z.; Batool, A.; Tian, L.; Jan, S. U.; Boddula, R.; Guo, B.; Liu, Q.; Gong, J. R. Adv. Mater. 2019, 31, 1804838. [183] Devi, P.; Saini, S.; Kim, K.-H. Biosens. Bioelectron. 2019, 141, 111158. [184] Li, H.; Kong, W.; Liu, J.; Yang, M.; Huang, H.; Liu, Y.; Kang, Z. J. Mater. Chem. B 2014, 2, 5652. [185] Wang, Y.; Xia, Y. Optical, Mikrochim. Acta 2019, 186, 50. [186] Garg, B.; Bisht, T. Molecules 2016, 21, 1653. [187] Li, H.; Huang, J.; Liu, Y.; Lu, F.; Zhong, J.; Wang, Y.; Li, S.; Lifshitz, Y.; Lee, S.-T.; Kang, Z. Nano Res. 2019, 12, 1585. [188] Shi, R.; Li, H.; Wu, E.; Xiong, L.; Lv, R.; Guo, R.; Liu, Y.; Xu, G.; Kang, Z.; Liu, J. Nanoscale 2017, 9,8410. [189] Li, H.; Guo, S.; Li, C.; Huang, H.; Liu, Y.; Kang, Z. ACS Appl. Mater. Interfaces 2015, 7, 10004. [190] Biju, V. Chem. Soc. Rev. 2014, 43, 744. [191] Zhang, M.; Wang, H.; Song, Y.; Huang, H.; Shao, M.; Liu, Y.; Li, H.; Kang, Z. ACS Appl. Bio Mater. 2018, 1, 894. [192] Li, H.; Huang, J.; Lu, F.; Liu, Y.; Song, Y.; Sun, Y.; Zhong, J.; Huang, H.; Wang, Y.; Li, S.; Lifshitz, Y.; Lee, S.-T.; Kang, Z. ACS Appl. Bio Mater. 2018, 1, 663. [193] Zhang, M.; Hu, L.; Wang, H.; Song, Y.; Liu, Y.; Li, H.; Shao, M.; Huang, H.; Kang, Z. Nanoscale 2018, 10, 12734. [194] Huang, H.; Yang, S.; Liu, Y.; Yang, Y.; Li, H.; McLeod, J. A.; Ding, G.; Huang, J.; Kang, Z. ACS Appl. Bio Mater. 2019, 2, 5144. [195] Zhang, M.; Wang, H.; Liu, P.; Song, Y.; Huang, H.; Shao, M.; Liu, Y.; Li, H.; Kang, Z. Environ. Sci.:Nano 2019, 6, 3316. [196] Nurunnabi, M.; Khatun, Z.; Huh, K. M.; Park, S. Y.; Lee, D. Y.; Cho, K. J.; Lee, Y.-K. ACS Nano 2013, 7, 6858. [197] Kong, W.; Liu, J.; Liu, R.; Li, H.; Liu, Y.; Huang, H.; Li, K.; Liu, J.; Lee, S.-T.; Kang, Z. Nanoscale 2014, 6, 5116. [198] Kim, T. H.; Sirdaarta, J. P.; Zhang, Q.; Eftekhari, E.; John, J. S.; Kennedy, D.; Cock, I. E.; Li, Q. Nano Res. 2018, 11, 2204. [199] Roy, P.; Periasamy, A. P.; Lin, C.-Y.; Her, G.-M.; Chiu, W.-J.; C.-L. Shu, C.-L. Li.; Huang, C.-C.; Liang, C.-T.; Chang, H.-T. Nanoscale 2015, 7, 2504. [200] Qin, Y.; Zhou, Z.-W.; Pan, S.-T.; He, Z.-X.; Zhang, X.; Qiu, J.-X.; Duan, W.; Yang, T.; Zhou, S.-F. Toxicology 2015, 327, 62. [201] Chandra, A.; Deshpande, S.; Shinde, D. B.; Pillai, V. K.; Singh, N. ACS Macro Lett. 2014, 3, 1064. [202] Segawa, Y.; Levine D. R.; Itami, K. Acc. Chem. Res. 2019, 52, 2760. [203] Rim, Y. S.; Bae, S. H.; J. Chen, H.; De Marco, N.; Yang, Y. Adv. Mater. 2016, 28, 4415. [204] Jang, E.; Jun, S.; Jang, H.; Llim, J.; Kim, B.; Kim, Y. Adv. Mater. 2010, 22, 3076. [205] Zhu, H.; Yang Y.; Lian, T. Acc. Chem. Res. 2013, 46, 1270. [206] McGuire, J. A.; Joo, J.; Pietryga, J. M.; Schaller, R. D.; Klimov, V. I. Acc. Chem. Res. 2008, 41, 1810. [207] Vanmaekelbergh, D.; Liljeroth, P.; Chem. Soc. Rev. 2005, 34, 299. |
[1] | Shenna Deng, Changchun Peng, Yunhong Niu, Yun Xu, Yunxiao Zhang, Xiang Chen, Hongmin Wang, Shanshan Liu, Xiao Shen. Radical Brook Rearrangement Mediated Olefin Difunctionalization Involving α-Fluoroalkyl-α-silyl Methanols [J]. Acta Chimica Sinica, 2024, 82(2): 119-125. |
[2] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Nickel-Catalyzed Ring Opening Cross-Coupling of Aziridines [J]. Acta Chimica Sinica, 2024, 82(2): 190-212. |
[3] | Shan Li, Junxin Lu, Jie Liu, Lvqi Jiang, Wenbin Yi. Electrochemical Synthesis of α-Fluoroalkylated Ketones using Sodium Fluoroalkylsulfinate [J]. Acta Chimica Sinica, 2024, 82(2): 110-114. |
[4] | Dawei Zhang, Haiyang Zhao, Xiaotian Feng, Yucheng Gu, Xingang Zhang. Palladium-Catalyzed Cross-Coupling of Heteroaryl Bromides with gem-Difluoroallylborons [J]. Acta Chimica Sinica, 2024, 82(2): 105-109. |
[5] | Tongyi Zhai, Chang Ge, Pengcheng Qian, Bo Zhou, Longwu Ye. Brønsted Acid-Catalyzed Intramolecular Hydroalkoxylation/Claisen Rearrangement of Ynamides★ [J]. Acta Chimica Sinica, 2023, 81(9): 1101-1107. |
[6] | Yuhan Wu, Dongdong Zhang, Hongyu Yin, Zhengnan Chen, Wen Zhao, Yuhua Chi. Density Functional Theory Study of Janus In2S2X Photocatalytic Reduction of CO2 under “Double Carbon” Target [J]. Acta Chimica Sinica, 2023, 81(9): 1148-1156. |
[7] | Yuan Zhang, Beining Zheng, Meichun Fu, Shouhua Feng. Research Progress in the Application of Spinel Oxides in Tumor Therapy★ [J]. Acta Chimica Sinica, 2023, 81(8): 949-954. |
[8] | Zhanglong Yu, Zhongliang Li, Changjiang Yang, Qiangshuai Gu, Xinyuan Liu. Research Progress on Copper-Catalyzed Enantioselective Desymmetrization of Diols★ [J]. Acta Chimica Sinica, 2023, 81(8): 955-966. |
[9] | Yongxue Li, Yu Liu. Supramolecular Secondary Assembly Based on Amphiphilic Calix[4]arenes and Its Biological Applications★ [J]. Acta Chimica Sinica, 2023, 81(8): 928-936. |
[10] | Ruxin Tian, Miao Yang, Guo Chen, Jiangshan Liu, Mengmei Yuan, Hong Yuan, Shuxin Ouyang, Tierui Zhang. Ru/Quartz Filter Paper: A Recyclable Photothermocatalytic Film for CO2 Methanation★ [J]. Acta Chimica Sinica, 2023, 81(8): 869-873. |
[11] | Jiawen Liu, Weihuang Lin, Weijia Wang, Xueyi Guo, Ying Yang. Synthesis and Photocatalytic Degradation of Cu1.94S-SnS Nano-heterojunction [J]. Acta Chimica Sinica, 2023, 81(7): 725-734. |
[12] | Minghui He, Ziqiu Ye, Guiqing Lin, Sheng Yin, Xinyi Huang, Xu Zhou, Ying Yin, Bo Gui, Cheng Wang. Research Progress of Porphyrin-Based Covalent Organic Frameworks in Photocatalysis★ [J]. Acta Chimica Sinica, 2023, 81(7): 784-792. |
[13] | Shuang Yang, Ningyi Wang, Qingqing Hang, Yuchen Zhang, Feng Shi. Advances in Catalytic Asymmetric Reactions Involving o-Hydroxyphenyl Substituted p-Quinone Methides★ [J]. Acta Chimica Sinica, 2023, 81(7): 793-808. |
[14] | Li Liu, Gang Zheng, Guoqiang Fan, Hongguang Du, Jiajing Tan. Research Progress in Organic Reactions Involving 4-Acyl/Carbamoyl/Alkoxycarbonyl Substituted Hantzsch Esters [J]. Acta Chimica Sinica, 2023, 81(6): 657-668. |
[15] | Xinhong Cai, Jianzhong Chen, Wanbin Zhang. Development of Construction of Chiral C—X Bonds through Nickel Catalyzed Asymmetric Hydrogenation★ [J]. Acta Chimica Sinica, 2023, 81(6): 646-656. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||