Account

Chitosan-Based High-Mechanical Double-Network Hydrogels: Construction, Modulation and Applications

  • Yanyu Yang ,
  • Xing Wang ,
  • Decheng Wu
Expand
  • a College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China)
    (
    b Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China)
    (
    c Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China

Received date: 2020-08-16

  Online published: 2020-09-16

Supported by

the National Natural Science Foundation of China(Nos. 51803188); the National Natural Science Foundation of China(51973226); the National Natural Science Foundation of China(21725403)

Abstract

Double-network (DN) hydrogels are composed of two asymmetric networks with contrasting properties, wherein the rigid and brittle network serving as sacrificial bonds effectively dissipates energy to enhance the mechanical performance. The first reconstructable physical network endows the DN hydrogels with outstanding anti-soften and mechanical stability. However, the monotonous type of physical networks and the difficulty in tailoring structure and mechanics greatly limit the development and application of DN hydrogels. Focusing on these problems, we have fabricated the rigid and brittle chitosan physical network with adjustable network type, structure and property and further constructed various chitosan-based DN hydrogels with high mechanical performance and tunable mechanics. The hydrogels were potential materials for anti-freezing dresses, biomedical materials, flexible electronics and wearable devices. The universal strategy of constructing chitosan-based DN hydrogels was beneficial for developing various functional and high-mechanical hydrogels and broadening their applications.

Cite this article

Yanyu Yang , Xing Wang , Decheng Wu . Chitosan-Based High-Mechanical Double-Network Hydrogels: Construction, Modulation and Applications[J]. Acta Chimica Sinica, 2021 , 79(1) : 1 -9 . DOI: 10.6023/A20080370

References

[1]
Gong, J.P. Science 2014, 344, 161.
[2]
Chen, Q.; Zhu, L.; Zhao, C.; Wang, Q.M.; Zheng, J. Adv. Mater. 2013, 25, 4171.
[3]
Sun, J.Y.; Zhao, X.H.; Illeperuma, W.R.K.; Chaudhuri, O.; Oh, K.H.; Mooney, D.J.; Vlassak, J.J.; Suo, Z.G. Nature 2012, 489, 133.
[4]
Stevens, L.; Calvert, P.; Wallace, G.G.; Panhuis, M.I.H. Soft Matter 2013, 9, 3009.
[5]
Bakarich, S.E.; Pidcock, G.C.; Balding, P.; Stevens, L.; Calvert, P.; Panhuis, M.I.H. Soft Matter 2012, 8, 9985.
[6]
Yuan, N.X.; Xu, L.; Wang, H.L.; Fu, Y.P.; Zhang, Z.; Liu, L.; Wang, C.L.; Zhao, J.H.; Rong, J.H. ACS Appl. Mater. Interfaces 2016, 8, 34034.
[7]
Chen, Q.; Zhu, L.; Chen, H.; Yan, H.L.; Huang, L.N.; Yang, J.; Zheng, J. Adv. Funct. Mater. 2015, 25, 1598.
[8]
Li, J.Y.; Suo, Z.G.; Vlassak, J.J. J. Mater. Chem. B 2014, 2, 6708.
[9]
Ladet, S.; David, L.; Domard, A. Nature 2008, 452, 76.
[10]
Porath, J.; Sundberg, L.; Fornsted, N.; Olsson, I. Nature 1973, 245, 465.
[11]
Bhattarai, N.; Gunn, J.; Zhang, M.Q. Adv. Drug Delivery Rev. 2010, 62, 83.
[12]
Yang, Y.Y.; Wang, X.; Yang, F.; Shen, H.; Wu, D.C. Adv. Mater. 2016, 28, 7178.
[13]
Dash, M.; Chiellini, F.; Ottenbrite, R.M.; Chiellini, E. Prog. Polym. Sci. 2011, 36, 981.
[14]
Zhang, Y.L.; Yang, B.; Xu, L.X.; Zhang, X.Y.; Tao, L.; Wei, Y. Acta Chim. Sinica 2013, 71, 485 . (in Chinese)
[14]
张亚玲, 杨斌, 许亮鑫, 张小勇, 陶磊, 危岩, 化学学报, 2013, 71, 485.
[15]
Xiong, Y.; Yan, K.; Bentley, W.E.; Deng, H.B.; Du, Y.M.; Payne, G.F.; Shi, X.W. ACS Appl. Mater. Interfaces 2014, 6, 2948.
[16]
Shu, X.Z.; Zhu, K.J. Int. J. Pharm. 2002, 233, 217.
[17]
Shu, X.Z.; Zhu, K.J.; Song, W.H. Int. J. Pharm. 2001, 212, 19.
[18]
Guan, J.; Xu, H.X.; Huang, Y.F.; Tian, K.; Shao, Z.Z.; Chen, X. Acta Chim. Sinica 2010, 68, 89 . (in Chinese)
[18]
管娟, 许惠心, 黄郁芳, 田琨, 邵正中, 陈新, 化学学报, 2010, 68, 89.
[19]
Luo, F.; Sun, T.L.; Nakajima, T.; Kurokawa, T.; Zhao, Y.; Bin Ihsan, A.; Guo, H.L.; Li, X.F.; Gong, J.P. Macromolecules 2014, 47, 6037.
[20]
Yang, Y.Y.; Wang, X.; Yang, F.; Wang, L.N.; Wu, D.C. Adv. Mater. 2018, 30, 1707071.
[21]
Zhang, J.; Chen, L.; Shen, B.; Chen, L.; Feng, J. Carbohydr. Polym . 2019, 225, 115160.
[22]
Huang, L.; Zhu, Z.; Wu, D.; Gan, W.; Zhu, S.; Li, W.; Tian, J.; Li, L.; Zhou, C.; Lu, L. Carbohydr. Polym . 2019, 225, 115110.
[23]
Zhang, Y.; Jiang, M.; Zhang, Y.; Cao, Q.; Wang, X.; Han, Y.; Sun, G.; Li, Y.; Zhou, J. Mater. Sci. Eng. C 2019, 104, 110002.
[24]
Li, J.Y.; Illeperuma, W.B.K.; Suo, Z.G.; Vlassak, J.J. ACS Macro Lett. 2014, 3, 520.
[25]
Chen, Q.; Wei, D.D.; Chen, H.; Zhu, L.; Jiao, C.C.; Liu, G.; Huang, L.N.; Yang, J.; Wang, L.B.; Zheng, J. Macromolecules 2015, 48, 8003.
[26]
Xin, H.; Saricilar, S.Z.; Brown, H.R.; Whitten, P.G.; Spinks, G.M. Macromolecules 2013, 46, 8393.
[27]
Yang, Y.Y.; Yang, Y.T.; Cao, Y.X.; Wang, X.; Chen, Y.R.; Liu, H.Y.; Gao, Y.F.; Wang, J.F.; Liu, C.; Wang, W.J.; Yu, J.K.; Wu, D.C. Chem. Eng. J. 2021, 403, 126431.
[28]
Liu, H.Y.; Wang, X.; Cao, Y.X.; Yang, Y.Y.; Yang, Y.T.; Gao, Y.F.; Ma, G.S.; Wang, J.F.; Wang, W.J.; Wu, D.C. ACS Appl. Mater. Interfaces 2020, 12, 25334.
[29]
Qu, J.; Zhao, X.; Liang, Y.; Zhang, T.; Ma, P.X.; Guo, B. Biomaterials 2018, 183, 185.
[30]
Chedly, J.; Soares, S.; Montembault, A.; von Boxberg, Y.; Veron-Ravaille, M.; Mouffle, C.; Benassy, M.N.; Taxi, J.; David, L.; Nothias, F. Biomaterials 2017, 138, 91.
Outlines

/