Review

Design, Synthesis and Applications of Chiral Metal-Organic Frameworks

  • Chen Zhonghang ,
  • Han Zongsu ,
  • Shi Wei ,
  • Cheng Peng
Expand
  • College of Chemistry, Nankai University, Tianjin 300071, China

Received date: 2020-09-23

  Online published: 2020-11-10

Supported by

Project supported by the National Natural Science Foundation of China (No. 21861130354), the Natural Science Foundation of Tianjin (No. 18JCJQJC47200) and the Fundamental Research Funds for the Central Universities, Nankai University (Nos. 63201016, 63201043).

Abstract

Chiral metal-organic frameworks have shown important applications in the identification and separation of enantiomers and asymmetric heterogeneous catalysis, owing to their structural diversities and multifunctionalities. Recently, the applications of chiral metal-organic frameworks have been expanded to other research fields, such as circularly polarized luminescence and chiral ferroelectrics. Compared with achiral metal-organic frameworks, it is highly challenging to synthesize chiral metal-organic frameworks, because the chirality introduction usually results in the difficulty of the crystallization and purification process for the design of chiral metal-organic frameworks. In this review, we discussed three main strategies that have been utilized to construct chiral metal-organic frameworks, including direct synthesis by chiral ligands, spontaneous resolution with achiral ligands or in the presence of chiral-template, and post-synthetic modification of achiral metal-organic frameworks. Moreover, the recent research progresses of chiral metal-organic frameworks in chiral molecular recognition, enantiomer separation, asymmetric catalysis, circularly polarized luminescence, and chiral ferroelectrics are discussed.

Cite this article

Chen Zhonghang , Han Zongsu , Shi Wei , Cheng Peng . Design, Synthesis and Applications of Chiral Metal-Organic Frameworks[J]. Acta Chimica Sinica, 2020 , 78(12) : 1336 -1348 . DOI: 10.6023/A20090439

References

[1] Lin, G.-Q.; Sun, X.-W.; Hong, R. Chiral Synthesis:Basic Research and Progress, Science Press, Beijing, 2018 (in Chinese). (林国强, 孙兴文, 洪然, 手性合成:基础研究与进展, 科学出版社, 北京, 2018.)
[2] Wang, Y.; Xu, J.; Wang, Y. W.; Chen, H. Y. Chem. Soc. Rev. 2013, 42, 2930.
[3] Zhao, K.-H.; Zhong, X.-H. Optics, Peking University Press, Beijing, 2018 (in Chinese). (赵凯华, 钟锡华, 光学, 北京大学出版社, 北京, 2018.)
[4] You, Q.-D.; Lin, G.-Q. Chiral Drugs:Research and Evaluation, Chemical Industry Press, Beijing, 2011 (in Chinese). (尤启冬, 林国强, 手性药物研究与评价, 化学工业出版社, 北京, 2011.)
[5] Zhou, Q. L. Privileged Chiral Ligands and Catalysts, Wiley-VCH, 2011.
[6] Zhang, L.; Qin, L.; Wang, X.; Cao, H.; Liu, M. Adv. Mater. 2014, 26, 6959.
[7] Constable, E. C.; Housecroft, C. E. Chem. Soc. Rev. 2013, 42, 1429.
[8] Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444.
[9] Chen, X.-M.; Zhang, J.-P. et al., Metal-Organic Frameworks, Chemical Industry Press, Beijing, 2017 (in Chinese). (陈小明, 张杰鹏等编著, 金属-有机框架材料, 化学工业出版社, 北京, 2017.)
[10] Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Science 2012, 335, 1606.
[11] Wu, S. Y.; Min, H.; Shi, W.; Cheng, P. Adv. Mater. 2020, 32, 1805871.
[12] Zhu, L.; Liu, X. Q.; Jiang, H. L.; Sun, L. B. Chem. Rev. 2017, 117, 8129.
[13] Cai, G.; Ding, M.; Wu, Q.; Jiang, H.-L. Natl. Sci. Rev. 2020, 7, 37.
[14] Pan, Y.; Qian, Y.; Zheng, X.; Chu, S.-Q.; Yang, Y.; Ding, C.; Wang, X.; Yu, S.-H.; Jiang, H.-L. Natl. Sci. Rev. 2020, doi:10.1093/nsr/nwaa224.
[15] Huang, G.; Chen, Y.-Z.; Jiang, H.-L. Acta Chim. Sinica 2016, 74, 113(in Chinese). (黄刚, 陈玉贞, 江海龙, 化学学报, 2016, 74, 113.)
[16] Wu, Q.-Y.; Zhang, C.-X.; Sun, K.; Jiang, H.-L. Acta Chim. Sinica 2020, 78, 688(in Chinese). (吴浅耶, 张晨曦, 孙康, 江海龙, 化学学报, 2020, 78, 688.)
[17] Batten, S. R.; Champness, N. R.; Chen, X. M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O'Keeffe, M.; Suh, M. P.; Reedijk, J. Pure Appl. Chem. 2013, 85, 1715.
[18] Yaghi, O. M.; Kalmutzki, M. J.; Diercks, C. S. Introduction to Reticular Chemistry:Metal-Organic Frameworks and Covalent Organic Frameworks, Wiley-VCH, Weinheim, 2019.
[19] Zhao, X.; Wang, Y. X.; Li, D. S.; Bu, X. H.; Feng, P. Y. Adv. Mater. 2018, 30, 1705189.
[20] Li, X.; Wu, J.; He, C.; Meng, Q.; Duan, C. Small 2019, 15, 1970171.
[21] Ma, L. Q.; Abney, C.; Lin, W. B. Chem. Soc. Rev. 2009, 38, 1248.
[22] Liu, Y.; Xuan, W. M.; Cui, Y. Adv. Mater. 2010, 22, 4112.
[23] Morris, R. E.; Bu, X. H. Nature Chem. 2010, 2, 353.
[24] Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112, 1196.
[25] Gu, Z. G.; Zhan, C. H.; Zhang, J.; Bu, X. H. Chem. Soc. Rev. 2016, 45, 3122.
[26] Han, Z. S.; Shi, W.; Cheng, P. Chin. Chem. Lett. 2018, 29, 819.
[27] Liu, Y.; Li, W.; Zhang, J. Natl. Sci. Rev. 2017, 4, 326.
[28] Zhao, X.; Nguyen, E. T.; Hong, A. N.; Feng, P.; Bu, X. Angew. Chem. Int. Ed. 2018, 57, 7101.
[29] Mei, P.; Zhang, Y.; Feng, X. Acta Chim. Sinica 2020, 78, 1041(in Chinese). (梅佩, 张媛媛, 冯霄, 化学学报, 2020, 78, 1041.)
[30] Corella-Ochoa, M. N.; Tapia, J. B.; Rubin, H. N.; Lillo, V.; González-Cobos, J. J. Am. Chem. Soc. 2019, 141, 14306.
[31] Vaidhyanathan, R.; Bradshaw, D.; Rebilly, J.-N.; Barrio, J.-P.; Gould, J.-A.; Berry, N.-G.; Rosseinsky, M.-J. Angew. Chem. Int. Ed. 2006, 45, 6495.
[32] Cai, H.; Huang, Y.-L.; Li, D. Coord. Chem. Rev. 2019, 378, 207.
[33] Xu, Z. X.; Liu, L.; Zhang, J. Inorg. Chem. 2016, 55, 6355.
[34] Liu, J.; Wang, F.; Zhang, J. Cryst. Growth Des. 2017, 17, 5393.
[35] Zhang, S. Y.; Yang, C. X.; Shi, W.; Yan, X.-P.; Cheng, P.; Wojtas, L.; Zaworotko, M. J. Chem 2017, 3, 281.
[36] Wanderley, M. M.; Wang, C.; Wu, C. D.; Lin, W. J. Am. Chem. Soc. 2012, 134, 9050.
[37] Cortijo, M.; Valentín-Pérez, Á.; Rouzières, M.; Clérac, R.; Rosa, P.; Hillard, E. A. Crystals 2020, 10, 472.
[38] Zhang, X.; Xu, N.; Zhang, S.-Y.; Zhao, X.-Q.; Cheng, P. RSC Adv. 2014, 4, 40643.
[39] Wen, Q.; Tenenholtz, S.; Shimon, L.; Omri, B.-E.; Beck, L. M.; Houben, L.; Cohen, S. R.; Feldman, Y.; Oron, D.; Lahav, M.; Boom, M. E. J. Am. Chem. Soc. 2020, 142, 14210.
[40] Zuo, T.; Luo, D.; Huang, Y. L.; Li, Y. Y.; Zhou, X. P.; Li, D. Chem. Eur. J. 2020, 26, 1936.
[41] Han, Y.-H.; Liu, Y.-C.; Xing, X.-S.; Tian, C.-B.; Lin, P.; Du, S.-W. Chem. Commun. 2015, 51, 14481.
[42] Das, S.; Xu, S.; Ben, T.; Qiu, S. Angew. Chem. Int. Ed. 2018, 57, 8629.
[43] Kou, W.-T.; Yang, C.-X.; Yan, X.-P. J. Mater. Chem. A 2018, 6, 17861.
[44] Lu, Y.; Zhang, H.; Chan, J. Y.; Ou, R.; Zhu, H.; Forsyth, M.; Marijanovic, E. M.; Doherty, C. M.; Marriott, P. J.; Banaszak Holl, M. M.; Wang, H. Angew. Chem. Int. Ed. 2019, 131, 17084.
[45] Tan, C.; Han, X.; Li, Z.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2018, 140, 16229.
[46] Han, Z.; Wang, K.; Guo, Y.; Chen, W.; Zhang, J.; Zhang, X.; Siligardi, G.; Yang, S.; Zhou, Z.; Sun, P.; Shi, W.; Cheng, P. Nat. Commun. 2019, 10, 5117.
[47] Zhao, Y. W.; Zhang, X. M. J. Mater. Chem. C 2020, 8, 4453.
[48] Zhao, Y. W.; Wang, Y.; Zhang, X. M. ACS Appl. Mater. Interfaces 2017, 9, 20991.
[49] Franks, M. E.; Macpherson, G. R.; Figg, W. D. The Lancet 2004, 363, 1802.
[50] Abbas, A.; Wang, Z.-X.; Li, Z.; Jiang, H.; Liu, Y.; Cui, Y. Inorg. Chem. 2018, 57, 8697.
[51] Xie, S. M.; Zhang, Z. J.; Wang, Z. Y.; Yuan, L. M. J. Am. Chem. Soc. 2011, 133, 11892.
[52] José, N.-S.; Ana, A.-G.; Yolanda, M.-M.; Ganiel, R.-S.; Antypov, D.; Pilar, C.-F.; Rosseinsky, M. J.; Carlos, M.-G. J. Am. Chem. Soc. 2017, 139, 4294.
[53] Zhao, J.; Li, H.; Han, Y.; Li, R.; Ding, X.; Feng, X.; Wang, B. J. Mater. Chem. A 2015, 3, 12145.
[54] Chan, J. Y.; Zhang, H.; Nolvachai, Y.; Hu, Y.; Zhu, H.; Forsyth, M.; Gu, Q.; Hoke, D. E.; Zhang, X.; Marriot, P. J.; Wang, H. Angew. Chem. Int. Ed. 2018, 57, 17376.
[55] Seo, J. S.; Whang. D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982.
[56] Dang, D.; Wu, P.; He, C.; Xie, Z.; Duan, C. J. Am. Chem. Soc. 2010, 132, 14321.
[57] Han, Q.; Qi, B.; Ren, W.; He, C.; Niu, J.; Duan, C. Nat. Commun. 2015, 6, 10007.
[58] Han, Q.; He, C.; Zhao, M.; Qi, B.; Niu, J.; Duan, C. J. Am. Chem. Soc. 2013, 135, 10186.
[59] Fan, Y.; Ren, Y.; Li, J.; Yue, C.; Jiang, H. Inorg. Chem. 2018, 57, 11986.
[60] Gong, W.; Chen, X.; Jiang, H.; Chu, D.; Cui, Y.; Liu, Y. J. Am. Chem. Soc. 2019, 141, 7498.
[61] Jiang, H.; Zhang, W.; Kang, X.; Cao, Z.; Chen, X.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2020, 142, 9642.
[62] Sang, Y.; Han, J.; Zhao, T.; Duan, P.; Liu, M. Adv. Mater. 2020, 32, 1900110.
[63] Zhao, T.; Han, J.; Duan, P.; Liu, M. Acc. Chem. Res. 2020, 53, 1279.
[64] Li, M.; Lin, W.-B.; Fang, L.; Chen, C.-F. Acta Chim. Sinica 2017, 75, 1150(in Chinese). (李猛, 林伟彬, 房蕾, 陈传峰, 化学学报, 2017, 75, 1150.)
[65] Chen, S. M.; Chang, L. M.; Yang, X. K.; Luo, T.; Xu, H.; Gu, Z. G.; Zhang, J. ACS Appl. Mater. Interfaces 2019, 11, 31421.
[66] Zhao, T.; Han, J.; Jin, X.; Liu, Y.; Liu, M.; Duan, P. Angew. Chem. Int. Ed. 2019, 58, 4978.
[67] Zhao, T.; Han, J.; Jin, X.; Zhou, M.; Liu, Y.; Duan, P.; Liu, M. Research 2020, doi:10.34133/2020/6452123.
[68] Hu, L.; Li, K.; Shang, W.; Zhu, X.; Liu, M. Angew. Chem. Int. Ed. 2020, 59, 4953.
[69] Shang, W.; Zhu, X.; Liang, T.; Du, C.; Hu, L.; Li, T.; Liu, M. Angew. Chem. Int. Ed. 2020, 59, 12811.
[70] Shi, P.-P.; Tang, Y.-Y.; Li, P.-F.; Liao, W.-Q.; Wang, Z.-X.; Ye, Q.; Xiong, R.-G. Chem. Soc. Rev. 2016, 45, 3811.
[71] Guo, Z.; Cao, R.; Wang, X.; Li, H.; Yuan, W.; Wang, G.; Wu, H.; Li, J. J. Am. Chem. Soc. 2009, 131, 6894.
[72] Dong, X. Y.; Li, B.; Ma, B. B.; Li, S. J.; Dong, M. M.; Zhu, Y. Y.; Zang, S. Q.; Song, Y.; Hou, H. W.; Mak, T. C. J. Am. Chem. Soc. 2013, 135, 10214.
[73] Mon, M.; Ferrando-Soria, J.; Verdaguer, M.; Train, C.; Paillard, C.; Dkhil, B.; Versace, C.; Bruno, R.; Armentano, D.; Pardo, E. J. Am. Chem. Soc. 2017, 139, 8098.
Outlines

/