Recent Progress of Porous Polymers for Lithium Metal Anodes Protection
Received date: 2020-10-09
Online published: 2020-11-19
Supported by
National Natural Science Foundation of China(51702262); National Natural Science Foundation of China(51972270); National Natural Science Foundation of China(51872179); National Natural Science Foundation of China(51672225); Natural Science Foundation of Shaanxi Province(2020JZ-07); Key Research and Development Program of Shaanxi Province(2019TSLGY07-03)
Lithium metal batteries (LMBs) are regarded as one of the most promising candidates for next-generation high-energy-density devices, due to the high theoretical specific capacity and low electrochemical potential of lithium metal anode. However, the uncontrollable growth of Li dendrite, unstable Li/electrolyte interface and infinite volume fluctuation during charge/discharge process give rise to low Coulombic efficiency, poor cycle stability and even serious safety hazard from internal short-circuit via dendrite penetration through separators. These multifaceted problems severely hinder the practical applications of LMBs. Featured by high specific surface area, low density, controllable pore structure, and flexible molecular design of pore surface/skeleton functionality, porous polymers have received growing attention in electrochemical energy storage, especially for lithium anode protection. The nanopores and tailored functionalities could allow for facilitated Li ion transport, while inhibiting anions and regulating the grain size and distribution of LiF. The large pores are conducive to accommodating lithium deposition and lowing of local current density. Consequently, porous polymers have become the “new favorite” in the field of “dendrite-free” LMBs recently, which show great potential for stabilizing Li metal anode. However, explorations in this field still remain in their infancy, and the objective of this review is to briefly summarize the research progress of porous polymers, especially crystalline covalent organic frameworks for lithium metal anodes protection, by means of constructing the artificial solid electrolyte interphase layer, coating separator with functional layers and designing metal anode structure.
Key words: lithium metal battery; Li dendrite; anode protection; porous polymer; pore structure
Rong Zhuang , Xiaosa Xu , Changzhen Qu , Shunqi Xu , Tao Yu , Hongqiang Wang , Fei Xu . Recent Progress of Porous Polymers for Lithium Metal Anodes Protection[J]. Acta Chimica Sinica, 2021 , 79(4) : 378 -387 . DOI: 10.6023/A20100462
[1] | Tikekar, M.D.; Choudhury, S.; Tu, Z.; Archer, L.A. Nat. Energy. 2016, 1,1. |
[2] | Wang, M.Q.; Peng, Z.; Luo, W.W.; Ren, F.H.; Li, Z.D.; Zhang, Q.; He, H.Y.; Ouyang, C.Y.; Wang, D.Y. Adv. Energy Mater. 2019, 9,1802912. |
[3] | Guo, Y.P.; Li, H.Q.; Zhai, T.Y. Adv. Mater. 2017, 29,1700007. |
[4] | Qi, X.; Wang, C.; Nan, W.Z.; Hong, Q.H.; Peng, S.K.; Yan, S.J. J. Mater. Eng. 2020, 48,50. |
[4] | ( 齐新, 王晨, 南文争, 洪起虎, 彭思侃, 燕绍九, 材料工程, 2020, 48,50.) |
[5] | Zhai, P.; Liu, L.X.; Gu, X.K.; Wang, T.S.; Gong, Y.J. Adv. Energy Mater. 2020, 10,2001257. |
[6] | Liu, F.F.; Zhang, Z.W.; Ye, S.F.; Yao, Y.; Yu, Y. Acta Phys.-Chim. Sin. 2021, 37,2006021. |
[6] | ( 刘凡凡, 张志文, 叶淑芬, 姚雨, 余彦, 物理化学学报, 2021, 37,2006021.) |
[7] | Li, S.; Luo, Z.; Li, L.; Hu, J.G.; Zou, G.Q.; Hou, H.S.; Ji, X.B. Energy Storage Mater. 2020, 32,306. |
[8] | Chen, D.D.; Huang, S.; Zhong, L.; Wang, S.J.; Xiao, M.; Han, D.M.; Meng, Y.Z. Adv. Funct. Mater. 2020, 30,1907717. |
[9] | Xu, Y.; Zhou, Y.; Li, T.; Jiang, S.H.; Qian, X.; Yue, Q.; Kang, Y.J. Energy Storage Mater. 2020, 25,334. |
[10] | Gao, Y.; Yan, Z.F.; Gray, J.L.; He, X.; Wang, D.W.; Chen, T.H.; Huang, Q.Q.; Li, Y.C.; Wang, H.Y.; Kim, S.H.; Mallouk, T.E.; Wang, D.H. Nat. Mater. 2019, 18,384. |
[11] | Zhao, Z.D.; Chen, W.J.; Impeng, S.; Li, M.X.; Wang, R.; Liu, Y.C.; Zhang, L.; Dong, L.; Unruangsri, J.; Peng, C.X.; Wang, C.C.; Namuangruk, S.; Lee, S.Y.; Wang, Y.G.; Lu, H.B.; Guo, J. J. Mater. Chem. A 2020, 8,3459. |
[12] | Zhou, T.H.; Zhao, Y.; Choi, J.W.; Coskun, A. Angew. Chem., Int. Ed. 2019, 58,16795. |
[13] | Jiang, C.; Gu, Y.M.; Tang, M.; Chen, Y.; Wu, Y.C.; Ma, J.; Wang, C.L.; Hu, W.P. ACS Appl. Mater. Interfaces 2020, 12,10461. |
[14] | Xie, H.Y.; Hao, Q.; Jin, H.C.; Xie, S.; Sun, Z.W.; Ye, Y.D.; Zhang, C.H.; Wang, D.; Ji, H.X.; Wan, L.J. Sci. China: Chem. 2020, 63,1306. |
[15] | Li, G.X.; Liu, Z.; Huang, Q.Q.; Gao, Y.; Regula, M.; Wang, D.W.; Chen, L.Q.; Wang, D.H. Nat. Energy. 2018, 3,1076. |
[16] | Fan, L.; Zhuang, H.L.; Zhang, W.D.; Fu, Y.; Liao, Z.H.; Lu, Y.Y. Adv. Energy Mater. 2018, 8,1703360. |
[17] | Shi, H.D.; Yue, M.; Zhang, C.J.; Dong, Y.F.; Lu, P.F.; Zheng, S.H.; Huang, H.J.; Chen, J.; Wen, P.C.; Xu, Z.C.; Zheng, Q.; Li, X.F.; Yu, Y.; Wu, Z.S. ACS Nano 2020, 14,8678. |
[18] | Fu, C.; Venturi, V.; Kim, J.; Ahmad, Z.; Ells, A.-W.; Viswanathan, V.; Helms, B.A. Nat. Mater. 2020, 19,758. |
[19] | Lee, Y.G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D.S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S. Nat. Energy. 2020, 5,348. |
[20] | Das, S.; Heasman, P.; Ben, T.; Qiu, S.L. Chem. Rev. 2017, 117,1515. |
[21] | Zheng, B.N.; Lin, X.D.; Zhang, X.C.; Wu, D.C.; Matyjaszewski, K. Adv. Funct. Mater. 2019, 30,1907006. |
[22] | Sun, Q.; Dai, Z.F.; Meng, X.J.; Xiao, F.S. Chem. Soc. Rev. 2015, 44,6018. |
[23] | Wu, J.L.; Xu, F.; Li, S.M.; Ma, P.W.; Zhang, X.C.; Liu, Q.H.; Fu, R.W.; Wu, D.C. Adv. Mater. 2019, 31,1802922. |
[24] | Wu, D.C.; Xu, F.; Sun, B.; Fu, R.W.; He, H.K.; Matyjaszewski, K. Chem. Rev. 2012, 112,3959. |
[25] | Peng, Z.K.; Ding, H.M.; Chen, R.F.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77,681. |
[25] | ( 彭正康, 丁慧敏, 陈如凡, 高超, 汪成, 化学学报, 2019, 77,681.) |
[26] | He, Q.; Zhang, C.; Li, X.; Wang, X.; Mou, P.; Jiang, J.X. Acta Chim. Sinica 2018, 76,202. |
[26] | ( 贺倩, 张崇, 李晓, 王雪, 牟攀, 蒋加兴, 化学学报, 2018, 76,202.) |
[27] | Côté, A.P.; Benin, A.I.; Ockwig, N.W.; O'Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Science 2005, 310,1166. |
[28] | Geng, K.; He, T.; Liu, R.Y.; Dalapati, S.; Tan, K.T. T.; Li, Z.P.; Tao, S.S.; Gong, Y.F.; Jiang, Q.H.; Jiang, D.L. Chem. Rev. 2020, 120,8814. |
[29] | Jiang, J.X.; Su, F.; Trewin, A.; Wood, C.D.; Campbell, N.L.; Niu, H.; Dickinson, C.; Ganin, A.Y.; Rosseinsky, M.J.; Khimyak, Y.Z. Angew. Chem., Int. Ed. 2007, 46,8574. |
[30] | Xu, Y.H.; Jin, S.B.; Xu, H.; Nagai, A.; Jiang, D.L. Chem. Soc. Rev. 2013, 42,8012. |
[31] | Ben, T.; Ren, H.; Ma, S.Q.; Cao, D.P.; Lan, J.H.; Jing, X.F.; Wang, W.C.; Xu, J.; Deng, F.; Simmons, J.M.; Qiu, S.L.; Zhu, G.S. Angew. Chem., Int. Ed. 2009, 121,9621. |
[32] | Tian, Y.Y.; Zhu, G.S. Chem. Rev. 2020, 120,8934. |
[33] | Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem., Int. Ed. 2008, 47,3450. |
[34] | Liu, M.Y.; Guo, L.P.; Jin, S.B.; Tan, B. J. Mater. Chem. A 2019, 7,5153. |
[35] | Xu, F.; Yang, S.H.; Jiang, G.S.; Ye, Q.; Wei, B.Q.; Wang, H.Q. ACS Appl. Mater. Interfaces 2017, 9,37731. |
[36] | Budd, P.M.; Ghanem, B.S.; Makhseed, S.; McKeown, N.B.; Msayib, K.J.; Tattershall, C.E. Chem. Commun. 2004,230. |
[37] | Comesaña-Gándara, B.; Chen, J.; Bezzu, C.G.; Carta, M.; Rose, I.; Ferrari, M.C.; Esposito, E.; Fuoco, A.; Jansen, J.C.; McKeown, N.B. Energy Environ. Sci. 2019, 12,2733. |
[38] | Wood, C.D.; Tan, B.; Trewin, A.; Niu, H.; Bradshaw, D.; Rosseinsky, M.J.; Khimyak, Y.Z.; Campbell, N.L.; Kirk, R.; Stöckel, E. Chem. Mater. 2007, 19,2034. |
[39] | Tan, L.X.; Tan, B. Chem. Soc. Rev. 2017, 46,3322. |
[40] | Rozyyev, V.; Thirion, D.; Ullah, R.; Lee, J.; Jung, M.; Oh, H.; Atilhan, M.; Yavuz, C.T. Nat. Energy. 2019, 4,604. |
[41] | Liang, R.R.; Jiang, S.Y.; Ru-Han, A.; Zhao, X. Chem. Soc. Rev. 2020, 49,3920. |
[42] | Rodríguez-San-Miguel, D.; Zamora, F. Chem. Soc. Rev. 2019, 48,4375. |
[43] | Sun, T.; Xie, J.; Guo, W.; Li, D.S.; Zhang, Q.C. Adv. Energy Mater. 2020, 10,1904199. |
[44] | Xu, F.; Yang, S.H.; Chen, X.; Liu, Q.H.; Li, H.J.; Wang, H.Q.; Wei, B.Q.; Jiang, D.L. Chem. Sci. 2019, 10,6001. |
[45] | Xu, F.; Xu, H.; Chen, X.; Wu, D.C.; Wu, Y.; Liu, H.; Gu, C.; Fu, R.W.; Jiang, D.L. Angew. Chem., Int. Ed. 2015, 127,6918. |
[46] | Wu, J.L.; Xu, F.; Li, S.M.; Ma, P.W.; Zhang, X.C.; Liu, Q.H.; Fu, R.W.; Wu, D.C. Adv. Mater. 2019, 31,1802922. |
[47] | Liang, J.G.; Luo, Z.; Yan, Y.; Yuan, B. Mater. Rep. 2018, 32,1779. |
[47] | ( 梁杰铬, 罗政, 闫钰, 袁斌, 材料导报, 2018, 32,1779.) |
[48] | Xu, Y.F.; Gao, L.N.; Shen, L.; Liu, Q.Q.; Zhu, Y.Y.; Liu, Q.; Li, L.S.; Kong, X.Q.; Lu, Y.F.; Wu, H.B. Matter 2020, 3,1685. |
[49] | Cui, C.Y.; Yang, C.Y.; Eidson, N.; Chen, J.; Han, F.D.; Chen, L.; Luo, C.; Wang, P.F.; Fan, X.L.; Wang, C.S. Adv Mater. 2020, 32,e1906427. |
[50] | Shi, H.D.; Qin, J.Q.; Huang, K.; Lu, P.F.; Zhang, C.F.; Dong, Y.F.; Ye, M.; Liu, Z.M.; Wu, Z.S. Angew. Chem., Int. Ed. 2020, 59,12147. |
/
〈 |
|
〉 |