Research Progress on the Preparation and Properties of Two Dimensional Structure of Ionic Liquids
Received date: 2020-10-15
Online published: 2020-11-24
Supported by
National Natural Science Foundation of China(21922813); National Natural Science Foundation of China(21908221); National Natural Science Foundation of China(21776278); National Natural Science Foundation of China(21808220); Youth Innovation Promotion Association, CAS(2017066); State Key Laboratory of Multiphase Complex Systems(MPCS-2019-A-08)
As green alternatives to non-environmental reagents, ionic liquids (ILs) have brought about a revolution in green chemical engineering. Very recently, attention to interfacial ILs has arisen. As a new structural type of ionic liquid, the ionic liquid (IL) with two-dimensional structure is endowed with unique structural features, thermodynamic and dynamic characteristics due to its special electrostatic and hydrogen bonds. It shows excellent application prospects in the field of chemistry and materials and has become one of the important research directions in the field of ILs. The standard preparation methods of two-dimensional structure ILs, including self-assembly, Langmuir-Blodgett and physical vapor deposition (PVD) methods are introduced in this review. The advantages and disadvantages of each method are also summarized. Self-assembly is the easiest and most widely used method to prepare two-dimensional ILs and the obtained structure is stable at room temperature. Meanwhile, the two-dimensional structure can be regulated by choosing different polar solvents and solutions with different concentrations. Langmuir-Blodgett method is suitable for polyionic liquids and amphiphilic ILs, because it requires monolayer IL to be formed on the water surface. PVD is mainly for ILs with high stability in the heating process under vacuum conditions, through which precise regulation of two-dimensional ILs structure can be achieved at ion level. However, the structure is sensitive to temperature, and temperatures higher than 100 K will destroy it. Then we review the phase transition feature, mechanical and electrical characteristics of two-dimensional structure ILs, including the lubrication applications. The enhanced surface effect results in the liquid-solid transition of ILs and the tendency of solidification is stronger when approaching the solid surface. On one hand, the conductivity decreases drastically with decreasing the thickness of two-dimensional ILs structure due to solidification. On the other hand, the solidification contributes to better lubrication performance with stronger resistance to friction and wear. Finally, the future development and broad application of two-dimensional structure ILs are envisioned.
Yumiao Lu , Wei Chen , Yanlei Wang , Feng Huo , Yihui Dong , Li Wei , Hongyan He . Research Progress on the Preparation and Properties of Two Dimensional Structure of Ionic Liquids[J]. Acta Chimica Sinica, 2021 , 79(4) : 443 -458 . DOI: 10.6023/A20100475
[1] | Yin, C.; Wang, Z.K.; Liu, D.; Peng, Z.T.; Song, H.J.; Zhu, H.; Chen, Q.W.; Wu, K. Acta Chim. Sinica 2020, 78,695. (in Chinese) |
[1] | ( 尹岑, 王子宽, 刘丹, 彭展涛, 宋环君, 祝浩, 陈其伟, 吴凯, 化学学报, 2020, 78,695.) |
[2] | Hu, Z.; Liu, Z.B.; Tian, J.G. Chinese J. Chem. 2020, 38,981. |
[3] | Wang, Z.T.; Li, H.; Yan, S.C.; Fang, Q.R. Acta Chim. Sinica 2020, 78,63. (in Chinese) |
[3] | ( 王志涛, 李辉, 颜士臣, 方千荣, 化学学报, 2020, 78,63.) |
[4] | Huang, W.; Li, Y.G. Chinese J. Chem. 2019, 37,1291. |
[5] | Cao, L.Y.; Wang, T.T.; Wang, C. Chinese J. Chem. 2018, 36,754. |
[6] | Zhang, D.D.; Yuan, Z.Z.; Zhang, G.Q.; Tian, N.; Liu, D.M.; Zhang, Y.Z. Acta Chim. Sinica 2018, 76,537. (in Chinese) |
[6] | ( 张丹丹, 袁振洲, 张国庆, 田楠, 刘丹敏, 张永哲, 化学学报, 2018, 76,537.) |
[7] | Zhang, C.H.; Fu, L.; Zhang, Y.F.; Liu, Z.F. Acta Chim. Sinica 2013, 71,308. (in Chinese) |
[7] | ( 张朝华, 付磊, 张艳锋, 刘忠范, 化学学报, 2013, 71,308.) |
[8] | Ji, J.P.; Song, X.F.; Liu, J.Z.; Yan, Z.; Huo, C.X.; Zhang, S.L.; Su, M.; Liao, L.; Wang, W.H.; Ni, Z.H. Nat. Commun. 2016, 7,1. |
[9] | Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H. Nature 2017, 546,270. |
[10] | Jariwala, D.; Marks, T.J.; Hersam, M.C. Nat. Mater. 2017, 16,170. |
[11] | Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I.E.; Cepellotti, A.; Pizzi, G. Nat. Nanotechnol. 2018, 13,246. |
[12] | Pârvulescu, V.I.; Hardacre, C. Chem. Rev. 2007, 107,2615. |
[13] | Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Appl. Catal. A: Gen. 2010, 373,1. |
[14] | Maton, C.; De Vos, N.; Stevens, C.V. Chem. Soc. Rev. 2013, 42,5963. |
[15] | Leng, M.H.; Chen, S.M.; Zhang, J.L.; Lang, H.Y.; Kang, Y.H.; Zhang, S.J. Acta Chim. Sinica 2015, 73,403. (in Chinese) |
[15] | ( 冷明浩, 陈仕谋, 张军玲, 郎海燕, 康艳红, 张锁江, 化学学报, 2015, 73,403.) |
[16] | Liu, M.Y.; Che, J.N.; Wu, W.H.; Lu, Y.X.; Peng, C.J.; Liu, H.L.; Lu, H.; Yang, Q.; Wang, H.L. Acta Chim. Sinica 2015, 73,116. (in Chinese) |
[16] | ( 刘梦莹, 车佳宁, 吴蔚闳, 卢运祥, 彭昌军, 刘洪来, 卢浩, 杨强, 杨强, 汪华林, 化学学报, 2015, 73,116.) |
[17] | Podgorsek, A.; Jacquemin, J.; Pádua, A.; Costa Gomes, M. Chem. Rev. 2016, 116,6075. |
[18] | Zhang, S.J.; Wang, Y.L.; He, H.Y.; Huo, F.; Lu, Y.M.; Zhang, X.C.; Dong, K. Green Energy Environ. 2017, 2,329. |
[19] | Wang, J.J. Green Energy Environ. 2020, 5,122. |
[20] | Wang, Y.L.; Qian, C.; Huo, F.; Qin, J.Y.; He, H.Y. J. Mater. Chem. A 2020, 8,19908. |
[21] | Wang, Y.L.; Qian, C.; Huo, F.; Xu, B.H.; He, H.Y.; Zhang, S.J. AIChE J. 2020.doi: 10.1002/aic.17060. |
[22] | He, Y.Q.; Li, H.; Qu, C.Y.; Cao, W.; Ma, M. Green Chem. Eng. 2020. doi: 10.1016/j.gce.2020.10.006. |
[23] | Yuan, X.Q.; Zhang, Y.Q.; Li, Z.Y.; Huo, F.; Dong, Y.H.; He, H.Y. Chin. J. Chem. 2020. doi: 10.1002/cjoc.202000414. |
[24] | Zhang, H.H.; Zhu, M.Y.; Zhao, W.; Li, S.; Feng, G. Green Energy Environ. 2018, 3,120. |
[25] | Souda, R. J. Phys. Chem. B 2009, 113,12973. |
[26] | Uhl, B.; Buchner, F.; Alwast, D.; Wagner, N.; Behm, R.J. Beilstein J. Nanotechnol. 2013, 4,903. |
[27] | Buchner, F.; Forster-Tonigold, K.; Bozorgchenani, M.; Gross, A.; Behm, R.J. r. J. Phys. Chem. Lett. 2016, 7,226. |
[28] | Uhl, B.; Huang, H.; Alwast, D.; Buchner, F.; Behm, R.J. Phys. Chem. Chem. Phys. 2015, 17,23816. |
[29] | Maruyama, S.; Prastiawan, I.B. H.; Toyabe, K.; Higuchi, Y.; Koganezawa, T.; Kubo, M.; Matsumoto, Y. ACS Nano 2018, 12,10509. |
[30] | Wang, H.Z.; Lu, Q.M.; Ye, C.F.; Liu, W.M.; Cui, Z.J. Wear 2004, 256,44. |
[31] | Funston, A.M.; Fadeeva, T.A.; Wishart, J.F.; Castner, E.W. J. Phys. Chem. B 2007, 111,4963. |
[32] | Bhushan, B.; Palacio, M.; Kinzig, B. J. Colloid Interf. Sci. 2008, 317,275. |
[33] | Palacio, M.; Bhushan, B. J. Vac. Sci. Technol. A 2009, 27,986. |
[34] | Zhu, M.; Yan, J.; Mo, Y.F.; Bai, M.W. Tribol. Lett. 2008, 29,177. |
[35] | Sweeney, J.; Hausen, F.; Hayes, R.; Webber, G.B.; Endres, F.; Rutland, M.W.; Bennewitz, R.; Atkin, R. Phys. Rev. Lett. 2012, 109,155502. |
[36] | Liu, Y.D.; Zhang, Y.; Wu, G.Z.; Hu, J. J. Am. Chem. Soc. 2006, 128,7456. |
[37] | Bovio, S.; Podesta, A.; Lenardi, C.; Milani, P. J. Phys. Chem. B 2009, 113,6600. |
[38] | Galluzzi, M.; Bovio, S.; Milani, P.; Podestà, A. J. Phys. Chem. C 2018, 122,7934. |
[39] | Lu, Y.M.; Chen, W.; Wang, Y.L.; Huo, F.; Zhang, L.; He, H.Y.; Zhang, S.J. Phys. Chem. Chem. Phys. 2020, 22,1820. |
[40] | Wang, Z.; Priest, C. Langmuir 2013, 29,11344. |
[41] | Beattie, D.A.; Espinosa-Marzal, R.M.; Ho, T.T.; Popescu, M.N.; Ralston, J.; Richard, C.l. J.; Sellapperumage, P.M.; Krasowska, M. J. Phys. Chem. C 2013, 117,23676. |
[42] | Gong, X.; West, B.; Taylor, A.; Li, L. Ind. Eng. Chem. Res. 2016, 55,6391. |
[43] | Mo, Y.F.; Huang, F.C.; Zhao, F. Surf. Interface Anal. 2011, 43,1006. |
[44] | Gong, X.; Kozbial, A.; Rose, F.; Li, L. ACS Appl. Mater. Inter. 2015, 7,7078. |
[45] | Zhang, F.C.; Sha, M.L.; Ren, X.P.; Wu, G.Z.; Hu, J.; Zhang, Y. Chin. Phys. Lett. 2010, 27,086101. |
[46] | Zhao, W.J.; Zhu, M.; Mo, Y.F.; Bai, M.W. Colloid. Surface. A 2009, 332,78. |
[47] | Pu, J.B.; Liu, X.F.; Wang, L.P.; Xue, Q.J. Surf. Interface Anal. 2011, 43,1332.. |
[48] | Bovio, S.; Podesta, A.; Milani, P.; Ballone, P.; Del Pópolo, M. J. Phys.: Condens. Matter 2009, 21,424118. |
[49] | Nishida, J.; Breen, J.P.; Wu, B.; Fayer, M.D. ACS Cent. Sci. 2018, 4,1065. |
[50] | Wu, B.; Breen, J.P.; Fayer, M.D. J. Phys. Chem. C 2020, 124,4179. |
[51] | Zhao, W.J.; Mo, Y.F.; Pu, J.B.; Bai, M.W. Tribol. Int. 2009, 42,828. |
[52] | Ko?hler, R.; Restolho, J.; Krastev, R.; Shimizu, K.; Canongia Lopes, J.N.; Saramago, B. J. Phys. Chem. Lett. 2011, 2,1551. |
[53] | Bakshi, P.S.; Gusain, R.; Khatri, O.P. RSC Adv. 2016, 6,78296. |
[54] | Lee, B.S.; Chi, Y.S.; Lee, J.K.; Choi, I.S.; Song, C.E.; Namgoong, S.K.; Lee, S.-g. J. Am. Chem. Soc. 2004, 126,480. |
[55] | Branca, M.; Correia-Ledo, D.; Bolduc, O.R.; Ratel, M.; Schmitzer, A.R.; Masson, J.-F. Phys. Chem. Chem. Phys. 2011, 13,12015. |
[56] | Pu, J.B.; Huang, D.M.; Wang, L.P.; Xue, Q.J. Colloid. Surface. A 2010, 372,155. |
[57] | Pu, J.B.; Jiang, D.; Mo, Y.F.; Wang, L.P.; Xue, Q.J. Surf. Coat. Tech. 2011, 205,4855. |
[58] | Zhao, W.J.; Wang, Y.; Wang, L.P.; Bai, M.W.; Xue, Q.J. Colloid. Surface. A 2010, 361,118. |
[59] | Mo, Y.F.; Yu, B.; Zhao, W.J.; Bai, M.W. Appl. Surf. Sci. 2008, 255,2276. |
[60] | Yu, B.; Zhou, F.; Mu, Z.G.; Liang, Y.M.; Liu, W.M. Tribol. Int. 2006, 39,879. |
[61] | Gusain, R.; Kokufu, S.; Bakshi, P.S.; Utsunomiya, T.; Ichii, T.; Sugimura, H.; Khatri, O.P. Appl. Surf. Sci. 2016, 364,878. |
[62] | Erwin, A.J.; Xu, W.N.; He, H.K.; Matyjaszewski, K.; Tsukruk, V.V. Langmuir 2017, 33,3187. |
[63] | Lee, H.; Stryutsky, A.V.; Korolovych, V.F.; Mikan, E.; Shevchenko, V.V.; Tsukruk, V.V. Langmuir 2019, 35,11809. |
[64] | Sieling, T.; Christoffers, J.; Brand, I. ACS Sustain. Chem. Eng. 2019, 7,11593. |
[65] | Sieling, T.; Brand, I. ChemElectroChem 2020, 7,3168. |
[66] | Eftaiha, A.; Qaroush, A.K.; Kayed, G.G.; Abdel Rahman, A.R. K.; Assaf, K.I.; Paige, M.F. ChemPhysChem 2020, 21,1858. |
[67] | Earle, M.J.; Esperança, J.M.; Gilea, M.A.; Lopes, J.N. C.; Rebelo, L.P.; Magee, J.W.; Seddon, K.R.; Widegren, J.A. Nature 2006, 439,831. |
[68] | Armstrong, J.P.; Hurst, C.; Jones, R.G.; Licence, P.; Lovelock, K.R.; Satterley, C.J.; Villar-Garcia, I.J. Phys. Chem. Chem. Phys. 2007, 9,982. |
[69] | Waldmann, T.; Huang, H.H.; Hoster, H.E.; Höfft, O.; Endres, F.; Behm, R.J. ChemPhysChem 2011, 12,2565. |
[70] | Buchner, F.; Uhl, B.; Forster-Tonigold, K.; Bansmann, J.; Groß, A.; Behm, R.J. J. Chem. Phys. 2018, 148,193821. |
[71] | Buchner, F.; Forster-Tonigold, K.; Uhl, B.; Alwast, D.; Wagner, N.; Farkhondeh, H.; Groß, A.; Behm, R.J. ACS Nano 2013, 7,7773. |
[72] | Uhl, B.; Hekmatfar, M.; Buchner, F.; Behm, R.J. Phys. Chem. Chem. Phys. 2016, 18,6618. |
[73] | Uhl, B.; Cremer, T.; Roos, M.; Maier, F.; Steinrück, H.-P.; Behm, R.J. Phys. Chem. Chem. Phys. 2013, 15,17295. |
[74] | Uhl, B.; Buchner, F.; Gabler, S.; Bozorgchenani, M.; Behm, R.J. Chem. Commun. 2014, 50,8601. |
[75] | Buchner, F.; Forster-Tonigold, K.; Bozorgchenani, M.; Gross, A.; Behm, R.J. J. Phys. Chem. Lett. 2016, 7,226. |
[76] | Buchner, F.; Bozorgchenani, M.; Uhl, B.; Farkhondeh, H.; Bansmann, J.; Behm, R.J. J. Phys. Chem. C 2015, 119,16649. |
[77] | Cremer, T.; Wibmer, L.; Calderón, S.K.; Deyko, A.; Maier, F.; Steinrück, H.-P. Phys. Chem. Chem. Phys. 2012, 14,5153. |
[78] | Cremer, T.; Stark, M.; Deyko, A.; Steinru?ck, H.-P.; Maier, F. Langmuir 2011, 27,3662. |
[79] | Lexow, M.; Talwar, T.; Heller, B.S.; May, B.; Bhuin, R.G.; Maier, F.; Steinrück, H.-P. Phys. Chem. Chem. Phys. 2018, 20,12929. |
[80] | Souda, R. J. Phys. Chem. B 2008, 112,15349. |
[81] | Cremer, T.; Killian, M.; Gottfried, J.M.; Paape, N.; Wasserscheid, P.; Maier, F.; Steinrück, H.P. ChemPhysChem 2008, 9,2185. |
[82] | Foulston, R.; Gangopadhyay, S.; Chiutu, C.; Moriarty, P.; Jones, R.G. Phys. Chem. Chem. Phys. 2012, 14,6054. |
[83] | Schernich, S.; Wagner, V.; Taccardi, N.; Wasserscheid, P.; Laurin, M.; Libuda, J. Langmuir 2014, 30,6846. |
[84] | Rietzler, F.; May, B.; Steinrück, H.-P.; Maier, F. Phys. Chem. Chem. Phys. 2016, 18,25143. |
[85] | Bauer, T.; Mehl, S.; Brummel, O.; Pohako-Esko, K.; Wasserscheid, P.; Libuda, J. J. Phys. Chem. C 2016, 120,4453. |
[86] | Sobota, M.; Nikiforidis, I.; Hieringer, W.; Paape, N.; Happel, M.; Steinru?ck, H.-P.; Go?rling, A.; Wasserscheid, P.; Laurin, M.; Libuda, J. Langmuir 2010, 26,7199. |
[87] | Schernich, S.; Laurin, M.; Lykhach, Y.; Steinru?ck, H.-P.; Tsud, N.; Ska?la, T.s.; Prince, K.C.; Taccardi, N.; Matolín, V.; Wasserscheid, P. J. Phys. Chem. Lett. 2013, 4,30. |
[88] | Olschewski, M.; Gustus, R.; Ho?fft, O.; Lahiri, A.; Endres, F. J. Phys. Chem. C 2017, 121,2675. |
[89] | Carstens, T.; Gustus, R.; Ho?fft, O.; Borisenko, N.; Endres, F.; Li, H.; Wood, R.J.; Page, A.J.; Atkin, R. J. Phys. Chem. C 2014, 118,10833. |
[90] | Biedron, A.B.; Garfunkel, E.L.; Castner Jr, E.W.; Rangan, S. J. Chem. Phys. 2017, 146,054704. |
[91] | Syres, K.L.; Jones, R.G. Langmuir 2015, 31,9799. |
[92] | Lexow, M.; Heller, B.S.; Maier, F.; Steinrück, H.P. ChemPhysChem 2018, 19,2978. |
[93] | Lexow, M.; Heller, B.S.; Partl, G.; Bhuin, R.G.; Maier, F.; Steinru?ck, H.-P. Langmuir 2018, 35,398. |
[94] | Lahiri, A.; Carstens, T.; Atkin, R.; Borisenko, N.; Endres, F. J. Phys. Chem. C 2015, 119,16734. |
[95] | Buchner, F.; Kim, J.; Adler, C.; Bozorgchenani, M.; Bansmann, J.; Behm, R.J. J. Phys. Chem. Lett. 2017, 8,5804. |
[96] | Rietzler, F.; Nagengast, J.; Steinru?ck, H.-P.; Maier, F. J. Phys. Chem. C 2015, 119,28068. |
[97] | Koel, B.E.; Sellidj, A.; Paffett, M. Phys. Rev. B 1992, 46,7846. |
[98] | Rietzler, F.; Piermaier, M.; Deyko, A.; Steinru?ck, H.-P.; Maier, F. Langmuir 2014, 30,1063. |
/
〈 |
|
〉 |