Article

Single-Molecule Mechanism of pH Sensitive Smart Polymer

  • Miao Yu ,
  • Wu Zhao ,
  • Kai Zhang ,
  • Xin Guo
Expand
  • a School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
    b Innovation Method and Creative Design Key Laboratory of Sichuan Province, Chengdu 610065, China

Received date: 2020-11-18

  Online published: 2020-12-18

Supported by

Special Fund for Innovative Method Work(2020IM020400); Sichuan Science and Technology program(2019YFG0373); Fundamental Research Funds for the Central Universities(2019SCU12075)

Abstract

As an important part of smart materials, the volume, mass, or elasticity of pH-sensitive polymers can shift with pH values. Based on the feature, the pH-sensitive polymers can be used in many fields such as biology, chemistry and micro/ nano electromechanical system. Previous researches are based on the development and utilization of the known properties of functional smart materials, the mechanism of pH-sensitivity at the single-molecule level is still unclear. Based on the single molecule force spectroscopy, the single-chain mechanics of a typical pH-sensitive polymer, polyacrylic acid (PAA), in the buffer solution with different pH values have been studied. In order to reduce the influence of other factors on the experimental results, the buffer solution used in the experiment is disodium hydrogen phosphate citric acid with adjusted salt ion concentration of 0.5 mol/L, and the pH value is the only variable in the experiment (from 2 to 8). PAA is dissolved in deionized water (DI water) to a concentration of 5 mg/L, then used for the polymer physisorption on a silanized glass substrate, which has undergone piranha solution cleaning and then immersed in the (3-aminopropyl)- triethoxysilane (APTES) solution (2 mmol/L, CH2Cl2 solution) for 20 mins. After that, the sample is rinsed with abundant DI water to remove the loosely adsorbed polymer and dried by air flow. The single molecule force spectroscopy experiments were carried on a commercial atomic force microscope (Asylum Research, MFP-3D). The experimental results show that as the pH value increases, the single PAA chain undergoes from collapsed conformation to fully extended conformation, and the energy required for the transformation between different conformations during the stretching process is calculated. In addition, according to the chain shrinkage rate under different loads, the shrinkage work of single PAA chain under the change of pH is calculated. Based on the characteristic of the conformation changes of single PAA chain with pH value, a new molecular motor (switch) design concept was proposed. It can be expected that the result of this work can provide theoretical basis and data support for the design of multi response polymer and novel smart sensors.

Cite this article

Miao Yu , Wu Zhao , Kai Zhang , Xin Guo . Single-Molecule Mechanism of pH Sensitive Smart Polymer[J]. Acta Chimica Sinica, 2021 , 79(4) : 500 -505 . DOI: 10.6023/A20110529

References

[1]
Stuart, M.A. C.; Huck, W.T. S.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Nat. Mater. 2010, 9,101.
[2]
Schmaljohann, D. Adv. Drug Deliv. Rev. 2006, 58,1655.
[3]
Qiu, Y.; Park, K. Adv. Drug Deliv. Rev. 2001, 53,321.
[4]
Gil, E.S.; Hudson, S.M. Prog. Polym. Sci. 2004, 29,1173.
[5]
Qiu, X.Y.; Hu, S.W. Materials 2013, 6,738.
[6]
Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Angew. Chem.-Int. Ed. 2003, 42,4640.
[7]
Hu, W.; Zhang, Y. Acta Chim. Sinica 2010, 68,1855. (in Chinese)
[7]
( 胡炜, 张颖, 化学学报, 2010, 68,1855.)
[8]
Lu, T.T.; Liu, J.; Li, H.; Wei, T.B.; Zhang, Y.M.; Lin, Q. Prog. Chem. 2016, 28,1541. (in Chinese)
[8]
( 逯桃桃, 刘娟, 李辉, 魏太保, 张有明, 林奇, 化学进展, 2016, 28,1541.)
[9]
Galaev, I.Y.; Mattiasson, B. Trends Biotechnol. 1999, 17,335.
[10]
Dai, Y.N.; Li, P.; Wang, A.Q. Prog. Chem. 2007, 19,362. (in Chinese)
[10]
( 戴亚妮, 李平, 王爱勤, 化学进展, 2007, 19,362.)
[11]
Lutz, J.F. J. Polym. Sci. Polym. Chem. 2008, 46,3459.
[12]
Hu, J.L.; Meng, H.P.; Li, G.Q.; Ibekwe, S.I. Smart Mater. Struct. 2012, 21,23.
[13]
Zhou, H.W.; Ding, X.B. Prog. Chem. 2016, 28,111. (in Chinese)
[13]
( 周宏伟, 丁小斌, 化学进展, 2016, 28,111.)
[14]
Kim, Y.J.; Matsunaga, Y.T. J. Mater. Chem. B 2017, 5,4307.
[15]
Guan, X.L.; Li, Z.F.; Wang, L.; Liu, M.N.; Wang, K.L.; Yang, X.Q.; Li, Y.L.; Hu, L.L.; Zhao, X.L.; Lai, S.J.; Lei, Z.Q. Acta Chim. Sinica 2019, 77,1268. (in Chinese)
[15]
( 关晓琳, 李志飞, 王林, 刘美娜, 王凯龙, 杨学琴, 李亚丽, 胡丽丽, 赵小龙, 来守军, 雷自强, 化学学报, 2019, 77,1268.)
[16]
Guan, X.L.; Wang, L.; Li, Z.F.; Liu, M.N.; Wang, K.L.; Lin, B.; Yang, X.Q.; Lai, S.J.; Lei, Z.Q. Acta Chim. Sinica 2019, 77,1036. (in Chinese)
[16]
( 关晓琳, 王林, 李志飞, 刘美娜, 王凯龙, 林斌, 杨学琴, 来守军, 雷自强, 化学学报, 2019, 77,1036.)
[17]
Maleki, R.; Khoshoei, A.; Ghasemy, E.; Rashidi, A. J. Mol. Graph. Model. 2020, 100,107660.
[18]
Shi, Z.Q.; Li, Q.Q.; Mei, L. Chin. Chem. Lett. 2020, 31,1345.
[19]
Kanamala, M.; Wilson, W.R.; Yang, M.M.; Palmer, B.D.; Wu, Z.M. Biomaterials 2016, 85,152.
[20]
Meng, F.D.; Sun, J.; Li, Z.B. Chin. J. Chem. 2019, 37,1137.
[21]
Zhang, D.J.; Liu, J.; Chen, B.; Wang, J.X.; Jiang, L. Acta Chim. Sinica 2018, 76,425. (in Chinese)
[21]
( 张大杰, 刘捷, 陈波, 王京霞, 江雷, 化学学报, 2018, 76,425.)
[22]
Chen, X.M.; Chen, Y.; Liu, Y. Chin. J. Chem. 2018, 36,526.
[23]
Yu, Q.L.; Li, Z.; Dou, C.Y.; Zhao, Y.P.; Gong, J.X.; Zhang, J.F. Prog. Chem. 2020, 32,179.
[24]
Miao, J.K.; Shi, Y.Y.; Zhu, H.F.; Gao, M.Y. Chin. J. Chem. 2020, 38,719.
[25]
Richter, A.; Bund, A.; Keller, M.; Arndt, K.F. Sensor. Actuat. B-Chem. 2004, 99,579.
[26]
Shaibani, P.M.; Jiang, K.R.; Haghighat, G.; Hassanpourfard, M.; Etayash, H.; Naicker, S.; Thundat, T. Sensor. Actuat. B-Chem. 2016, 226,176.
[27]
Zhang, C.J.; Cano, G.G.; Braun, P.V. Adv. Mater. 2014, 26,5678.
[28]
Scarpa, E.; Mastronardi, V.M.; Guido, F.; Algieri, L.; Qualtieri, A.; Fiammengo, R.; Rizzi, F.; De Vittorio, M. Sci. Rep. 2020, 10,10.
[29]
Li, J.Y.; Li, H.B. Nanoscale 2020, 44,22564.
[30]
Neuman, K.C.; Nagy, A. Nat. Methods 2008, 5,491.
[31]
Rief, M.; Oesterhelt, F.; Heymann, B.; Gaub, H.E. Science 1997, 275,1295.
[32]
Rief, M.; Pascual, J.; Saraste, M.; Gaub, H.E. J. Mol. Biol. 1999, 286,553.
[33]
Benoit, M.; Gabriel, D.; Gerisch, G.; Gaub, H.E. Nat. Cell Biol. 2000, 2,313.
[34]
Janshoff, A.; Neitzert, M.; Oberdorfer, Y.; Fuchs, H. Angew. Chem.-Int. Ed. 2000, 39,3213.
[35]
Kilchherr, F.; Wachauf, C.; Pelz, B.; Rief, M.; Zacharias, M.; Dietz, H. Science 2016, 353,9.
[36]
Cai, W.H.; Xu, D.; Qian, L.; Wei, J.H.; Xiao, C.; Qian, L.M.; Lu, Z.Y.; Cui, S.X. J. Am. Chem. Soc. 2019, 141,9500.
[37]
Zhang, S.; Qian, H.J.; Liu, Z.H.; Ju, H.Y.; Lu, Z.Y.; Zhang, H.M.; Chi, L.F.; Cui, S.X. Angew. Chem.-Int. Ed. 2019, 58, 1659.
[38]
Cui, S.X. Acta Polym. Sin. 2016,1160. (in Chinese)
[38]
( 崔树勋, 高分子学报, 2016,1160.)
[39]
Li, H.B.; Liu, B.B.; Zhang, X.; Gao, C.X.; Shen, J.C.; Zou, G.T. Langmuir 1999, 15,2120.
[40]
Luo, Z.L.; Zhang, B.; Qian, H.J.; Lu, Z.Y.; Cui, S.X. Nanoscale 2016, 8,17820.
[41]
Bao, Y.; Luo, Z.L.; Cui, S.X. Chem. Soc. Rev. 2020, 49,2799.
[42]
Zhang, Y.-H.; Wang, Z.-Q.; Zhang, X. Acta Polym. Sin. 2009,973. (in Chinese)
[42]
( 张义恒, 王治强, 张希, 高分子学报, 2009,973.)
[43]
Zhang, W.-K.; Wang, C.; Zhang, X. Chinese Sci. Bull. 2003, 48,1113. (in Chinese)
[43]
( 张文科, 王驰, 张希, 科学通报, 2003, 48,1113.)
[44]
Yang, J.; Petitjean, S.J. L.; Koehler, M.; Zhang, Q.; Dumitru, A.C.; Chen, W.; Derclaye, S.; Vincent, S.P.; Soumillion, P.; Alsteens, D. Nat. Commun. 2020, 11,4541.
[45]
Yu, M.; Qian, L.; Cui, S.X. J. Phys. Chem. B 2017, 121,4257.
[46]
Wang, K.F.; Pang, X.C.; Cui, S.X. Langmuir 2013, 29,4315.
[47]
Oesterhelt, F.; Rief, M.; Gaub, H.E. New J. Phys. 1999, 1,11.
[48]
Cai, W.H.; Xiao, C.; Qian, L.M.; Cui, S.X. Nano Res. 2019, 12,57.
Outlines

/