Study on the Reaction of Nanosized Yttrium Oxide Cluster Anions with n-Butane in the Gas Phase
Received date: 2020-11-05
Online published: 2020-12-31
Supported by
Beijing Natural Science Foundation(2182092); K. C. Wong Education Foundation, and Youth Innovation Promotion Association, Chinese Academy of Sciences(2018041)
Investigation on the reactions of atomically precise transition metal oxide nanoparticles with small molecules can not only identify the property evolution of nanoparticles with respect to the continuum change of size and composition, but also improve our understanding of the formation mechanism of reactive oxygen species [e.g., atomic oxygen radical anions (O-• radicals)] over oxide surface. Yttrium oxide cluster anions YxOy- (x≤50,y≤76) with different oxygen deficiencies (Δ≡2y–1–3x, Δ=0~5) and Y xOyF- (x≤49,y≤74) with Δ=1 [Δ≡(2y+1)–1–3x] have been prepared by laser ablation in an O2 background and reacted with alkane molecules (n-butane) in a fast flow reactor. The reactions of mass-selected small-sized YxOy- (x≤8) clusters withn-butane were investigated in a linear ion trap reactor. Time-of-flight mass spectrometer was used to detect the cluster distribution before and after the reactions. The observation of (Y2O3)NOH- (N=1~25), (Y2O3)NYO4H- (N=1, 3~24), and (Y2O3)NYO2FH- (N=1~24) products suggest that (Y2O3)NO- (∆=1;N=1~25), (Y2O3)NYO4- (∆=4;N=1, 3~24) and (Y2O3)NYO2F- (Δ=1;N=1~24) can bring about hydrogen-atom abstraction (HAA) from n-butane. The reactivity of (Y2O3)NO-, (Y2O3)NYO2F- and (Y2O3)NYO4- clusters are significantly size-dependent and the highest reactivity was observed for N=3 (Y6O10-, Y7O11F-, and Y7O13-). Density functional theory (DFT) calculations were performed to study the geometrical structures and unpaired spin densities of (Y2O3)NO- (N=1~4), (Y2O3)NYO2F- (N=1~3), and (Y2O3)NYO4- (N=1, 3, 4) clusters that were found to contain O-• radicals as active centers to abstract hydrogen atoms from n-butane, in agreement with the experiments. The results imply that the O-• radicals which had been proved to be present in the small yttrium oxide clusters with Δ=1 or 4 are well preserved in the yttrium oxide nanoparticles. (Y 2O3)NYO4- (∆=4;N=1, 3~24) and (Y2O3)NYO2F- (∆=1;N=1~24) can be considered to be generated by the adsorption of an O2 molecule or F onto the unreactive singlet (Y2O3)NYO2- (∆=0;N=1~24). The studies on gas-phase clusters suggest that adsorption of O2 molecule or F atom onto unreactive metal oxide clusters will result in the generation of O-• radical (O2-+O2→O-•+O2-• and O2-+F•→O-•+F-). This work not only reveals the new mechanisms of the formation of O-• radical on metal oxide surfaces, but also provides new insights into the design of novel transition metal oxide-based catalysts.
Man Ruan , Yan-Xia Zhao , Sheng-Gui He . Study on the Reaction of Nanosized Yttrium Oxide Cluster Anions with n-Butane in the Gas Phase[J]. Acta Chimica Sinica, 2021 , 79(4) : 490 -499 . DOI: 10.6023/A20110511
[1] | Tyo, E.C.; Yin, C.; Di Vece, M.; Qian, Q.; Kwon, G.; Lee, S.; Lee, B.; DeBartolo, J.E.; Seifert, S.; Winans, R.E.; Si, R.; Ricks, B.; Goergen, S.; Rutter, M.; Zugic, B.; Flytzani-Stephanopoulos, M.; Wang, Z.W.; Palmer, R.E.; Neurock, M.; Vajda, S. ACS Catal. 2012, 2,2409. |
[2] | Iablokov, V.; Barbosa, R.; Pollefeyt, G.; Van Driessche, I.; Chenakin, S.; Kruse, N. ACS Catal. 2015, 5,5714. |
[3] | Zhu, Y.F.; Pan, X.L.; Jiao, F.; Li, J.; Yang, J.H.; Ding, M.Z.; Han, Y.; Liu, Z.; Bao, X.H. ACS Catal. 2017, 7,2800. |
[4] | Li, N.; Jiao, F.; Pan, X.L.; Ding, Y.; Feng, J.Y.; Bao, X.H. ACS Catal. 2018, 9,960. |
[5] | Kawano, S.; Fujishima, M.; Tada, H. Catal. Commun. 2020, 144,106076. |
[6] | Yang, G.; Yang, H.; Zhang, X.; Iqbal, K.; Feng, F.; Ma, J.; Qin, J.; Yuan, F.; Cai, Y.; Ma, J. J. Hazard. Mater. 2020, 397,122654. |
[7] | Dai, M.M.; Wang, J.; Li, L.G.; Wang, Q.; Liu, M.N.; Zhang, Y.G. Acta Chim. Sinica 2020, 78,355. (in Chinese) |
[7] | ( 代迷迷, 王建, 李麟阁, 王琪, 刘美男, 张跃钢, 化学学报, 2020, 78,355.) |
[8] | Yu, J.; Yang, Y.S.; Wei, M. Acta Chim. Sinica 2019, 77,1129. (in Chinese) |
[8] | ( 余俊, 杨宇森, 卫敏, 化学学报, 2019, 77,1129.) |
[9] | Zhang, T.; Guo, C.; Wei, S.X.; Wu, Z.H.; Han, Z.X.; Lu, X.Q. Acta Chim. Sinica 2018, 76,62. (in Chinese) |
[9] | ( 张田, 郭琛, 魏淑娴, 武中华, 韩兆翔, 鲁校庆, 化学学报, 2018, 76,62.) |
[10] | Che, M.; Tench, A.J. Adv. Catal. 1982, 31,77. |
[11] | Can, L.; Domen, K.; Maruya, K.; Onishi, T. J. Am. Chem. Soc. 1989, 111,7683. |
[12] | Panov, G.I.; Dubkov, K.A.; Starokon, E.V. Catal. Today 2006, 117,148. |
[13] | Che, M.; Tench, A.J. Adv. Catal. 1983, 32,1. |
[14] | Lunsford, J.H. Catal. Rev.: Sci. Eng. 1973, 8,135. |
[15] | Dyrek, K.; Che, M. Chem. Rev. 1997, 97,305. |
[16] | Chiesa, M.; Giamello, E.; Che, M. Chem. Rev. 2010, 110,1320. |
[17] | Chernyavsky, V.S.; Pirutko, L.V.; Uriarte, A.K.; Kharitonov, A.S.; Panov, G.I. J. Catal. 2007, 245,466. |
[18] | Linsebigler, A.L.; Lu, G.Q.; Yates, J.T. Chem. Rev. 1995, 95,735. |
[19] | Sterrer, M.; Berger, T.; Diwald, O.; Knozinger, E. J. Am. Chem. Soc. 2003, 125,195. |
[20] | Castleman, A. W., Jr. Catal. Lett. 2011, 141,1243. |
[21] | Zhao, Y.-X.; Ding, X.-L.; Ma, Y.-P.; Wang, Z.-C.; He, S.-G. Theor. Chem. Acc. 2010, 127,449. |
[22] | Zhao, Y.-X.; Wu, X.-N.; Ma, J.-B.; He, S.-G.; Ding, X.-L. Phys. Chem. Chem. Phys. 2011, 13,1925. |
[23] | Dietl, N.; Schlangen, M.; Schwarz, H. Angew. Chem., Int. Ed. 2012, 51,5544. |
[24] | Ding, X.-L.; Wu, X.-N.; Zhao, Y.-X.; He, S.-G. Acc. Chem. Res. 2012, 45,382. |
[25] | Meng, J.-H.; Deng, X.-J.; Li, Z.-Y.; He, S.-G.; Zheng, W.-J. Chem. - Eur. J. 2014, 20,5580. |
[26] | Tian, L.-H.; Meng, J.-H.; Wu, X.-N.; Zhao, Y.-X.; Ding, X.-L.; He, S.-G.; Ma, T.-M. Chem.-Eur. J. 2014, 20,1167. |
[27] | Wang, L.-N.; Chen, J.-J.; Li, X.-N.; Liu, Y.-Z.; He, S.-G. J. Phys. Chem. C 2019, 123,14180. |
[28] | Zhao, Y.-X.; Wang, M.-M.; Zhang, Y.; Ding, X.-L.; He, S.-G. Angew. Chem., Int. Ed. 2019, 58,8002. |
[29] | Feyel, S.; Doebler, J.; Schroeder, D.; Sauer, J.; Schwarz, H. Angew. Chem., Int. Ed. 2006, 45,4681. |
[30] | Ma, J.-B.; Wu, X.-N.; Zhao, Y.-X.; He, S.-G.; Ding, X.-L. Acta Phys.-Chim. Sin. 2010, 26,1761. (in Chinese) |
[30] | ( 马嘉璧, 吴晓楠, 赵艳霞, 何圣贵, 丁迅雷, 物理化学学报, 2010, 26,1761.) |
[31] | Guan, B.; Lu, W.; Fang, J.; Cole, R.B. J. Am. Soc. Mass. Spectrom. 2007, 18,517. |
[32] | Zhang, X.H.; Schwarz, H. Chem.-Eur. J. 2010, 16,1163. |
[33] | Yuan, Z.; Liu, Q.-Y.; Li, X.-N.; He, S.-G. Int. J. Mass Spectrom. 2016, 407,62. |
[34] | Zhang, M.-Q.; Zhao, Y.-X.; Liu, Q.-Y.; Li, X.-N.; He, S.-G. J. Am. Chem. Soc. 2017, 139,342. |
[35] | Xu, B.; Zhao, Y.-X.; Li, X.-N.; Ding, X.-L.; He, S.-G. J. Phys. Chem. A 2011, 115,10245. |
[36] | Ma, J.-B.; Wu, X.-N.; Zhao, Y.-X.; Ding, X.-L.; He, S.-G. J. Phys. Chem. A 2010, 114,10024. |
[37] | Wang, Z.-C.; Wu, X.-N.; Zhao, Y.-X.; Ma, J.-B.; Ding, X.-L.; He, S.-G. Chem. Phys. Lett. 2010, 489,25. |
[38] | Zhao, Y.-X.; Wu, X.-N.; Ma, J.-B.; He, S.-G.; Ding, X.-L. J. Phys. Chem. C 2010, 114,12271. |
[39] | Ma, J.-B.; Wu, X.-N.; Zhao, X.-X.; Ding, X.-L.; He, S.-G. Phys. Chem. Chem. Phys. 2010, 12,12223. |
[40] | Wu, Q.Y.; Chen, J.X.; Zhang, J.Y. Fuel Process. Technol. 2008, 89,993. |
[41] | Li, Z.-Y.; Zhao, Y.-X.; Wu, X.-N.; Ding, X.-L.; He, S.-G. Chem. - Eur. J. 2011, 17,11728. |
[42] | Li, B.T.; Zhang, S.Y. Int. J. Hydrogen Energy. 2013, 38,14250. |
[43] | Li, B.T.; Su, W.F.; Wang, X.N.; Wang, X.J. Int. J. Hydrogen Energy 2016, 41,14732. |
[44] | Taherian, Z.; Yousefpour, M.; Tajally, M.; Khoshandam, B. Int. J. Hydrogen Energy 2017, 42,16408. |
[45] | Kang, Y.; Tian, M.; Huang, C.; Lin, J.; Hou, B.; Pan, X.; Li, L.; Rykov, A.I.; Wang, J.; Wang, X. ACS Catal. 2019, 9,8373. |
[46] | Swirk, K.; Galvez, M.E.; Motak, M.; Grzybek, T.; Ronning, M.; Da Costa, P.; Int. J. Hydrogen Energy 2019, 44,274. |
[47] | Ilieva, L.; Venezia, A.M.; Petrova, P.; Pantaleo, G.; Liotta, L.F.; Zanella, R.; Kaszkur, Z.; Tabakova, T. Catalysts 2018, 8,283. |
[48] | Knickelbein, M. J. Chem. Phys. 1995, 102,1. |
[49] | Pramann, A.; Nakamura, Y.; Nakajima, A.; Kaya, K. J. Phys. Chem. A 2001, 105,7534. |
[50] | Gu, G.Y.; Dai, B.; Ding, X.L.; Yang, J.L. Eur. Phys. J. D 2004, 29,27. |
[51] | Rahane, A.B.; Murkute, P.A.; Deshpande, M.D.; Kumar, V. J. Phys. Chem. A 2013, 117,5542. |
[52] | Xu, L.; Xia, C.-J.; Wang, L.-F.; Xie, L.; Wang, B.; Zhang, Y.-F.; Huang, X. RSC Adv. 2014, 4,60270. |
[53] | Ma, J.-B.; Wang, Z.-C.; Schlangen, M.; He, S.-G.; Schwarz, H. Angew. Chem. Int. Ed. 2012, 51,5991. |
[54] | Ma, J.-B.; Wang, Z.-C.; Schlangen, M.; He, S.-G.; Schwarz, H. Angew. Chem., Int. Ed. 2013, 52,1226. |
[55] | Xue, W.; Wang, Z.-C.; He, S.-G.; Xie, Y.; Bernstein, E.R. J. Am. Chem. Soc. 2008, 130,15879. |
[56] | Zhao, Y.-X.; Yuan, J.-Y.; Ding, X.-L.; He, S.-G.; Zheng, W.-J. Phys. Chem. Chem. Phys. 2011, 13,10084. |
[57] | Wu, X.-N.; Ding, X.-L.; Bai, S.-M.; Xu, B.; He, S.-G.; Shi, Q. J. Phys. Chem. C 2011, 115,13329. |
[58] | Wu, X.-N.; Xu, B.; Meng, J.-H.; He, S.-G. Int. J. Mass Spectrom. 2012, 310,57. |
[59] | Ma, J.-B.; Xu, B.; Meng, J.-H.; Wu, X.-N.; Ding, X.-L.; Li, X.-N.; He, S.-G. J. Am. Chem. Soc. 2013, 135,2991. |
[60] | Wu, X.-N.; Ding, X.-L.; Li, Z.-Y.; Zhao, Y.-X.; He, S.-G. J. Phys. Chem. C 2014, 118,24062. |
[61] | Ding, X.-L.; Wang, D.; Wu, X.-N.; Li, Z.-Y.; Zhao, Y.-X.; He, S.-G. J. Chem. Phys. 2015, 143,124312. |
[62] | Chen, J.-J.; Zhang, T.; Zhang, M.-Q.; Liu, Q.-Y.; Li, X.-N.; He, S.-G. Chem.-Eur. J. 2017, 23,15820. |
[63] | Zhai, H.J.; Zhang, X.H.; Chen, W.J.; Huang, X.; Wang, L.S. J. Am. Chem. Soc. 2011, 133,3085. |
[64] | Wang, Z.-C.; Wu, X.-N.; Zhao, Y.-X.; Ma, J.-B.; Ding, X.-L.; He, S.-G. Chem.-Eur. J. 2011, 17,3449. |
[65] | Ding, X.-L.; Zhao, Y.-X.; Wu, X.-N.; Wang, Z.-C.; Ma, J.-B.; He, S.-G. Chem.-Eur. J. 2010, 16,11463. |
[66] | Dietl, N.; Hoeckendorf, R.F.; Schlangen, M.; Lerch, M.; Beyer, M.K.; Schwarz, H. Angew. Chem., Int. Ed. 2011, 50,1430. |
[67] | Jiang, L.; Wende, T.; Claes, P.; Bhattacharyya, S.; Sierka, M.; Meijer, G.; Lievens, P.; Sauer, J.; Asmis, K.R. J. Phys. Chem. A 2011, 115,11187. |
[68] | Yuan, Z.; Li, Z.-Y.; Zhou, Z.-X.; Liu, Q.-Y.; Zhao, Y.-X.; He, S.-G. J. Phys. Chem. C 2014, 118,14967. |
[69] | Frisch, M. J. T. G. W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P. Gaussian 09, revision A.1, Gaussian, Inc., Wallingford, CT, 2009. |
[70] | Becke, A.D. Phys. Rev. A 1988, 38,3098. |
[71] | Lee, C.T.; Yang, W.T.; Parr, R.G. Phys. Rev. B 1988, 37,785. |
[72] | Becke, A.D. J. Chem. Phys. 1993, 98,5648. |
[73] | Hay, P.J.; Wadt, W.R. J. Chem. Phys. 1985, 82,270. |
[74] | Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. J. Chem. Phys. 1953, 21,1087. |
[75] | Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7,3297. |
[76] | Raghavachari, K.; Trucks, G.W.; Pople, J.A.; Head-Gordon, M. Chem. Phys. Lett. 2013, 589,37. |
[77] | Jayatilaka, D.; Lee, T.J. J. Chem. Phys. 1993, 98,9734. |
[78] | Lee, T.J.; Taylor, P.R. Int. J. Quantum Chem. 1989,199. |
[79] | Schlegel, H.B. J. Comput. Chem. 1982, 3,214. |
[80] | Gonzalez, C.; Schlegel, H.B. J. Phys. Chem. 1990, 94,5523. |
[81] | Gonzalez, C.; Schlegel, H.B. J. Chem. Phys. 1989, 90,2154. |
/
〈 |
|
〉 |