Review

Recent Progress of Bioorthogonal Chemistry in China

  • Xin Wang ,
  • Xianrui Zhang ,
  • Zongyu Huang ,
  • Xinyuan Fan ,
  • Peng R. Chen
Expand
  • a Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
    b Beijing National Laboratory for Molecular Sciences, Beijing 100871, China

Received date: 2020-11-19

  Online published: 2021-01-07

Supported by

National Key Research and Development Program of China(2016YFA0501500); National Key Research and Development Program of China(2019YFA0904201); National Natural Science Foundation of China(91753000); National Natural Science Foundation of China(21740001); National Natural Science Foundation of China(22077004); National Natural Science Foundation of China(91957101); National Natural Science Foundation of China(21708020)

Abstract

Bioorthogonal chemistry refers to chemical reactions that can be carried out in biological systems without interfering with natural biochemical processes. During the past two decades since its emergence, the scope of bioorthogonal chemistry has been greatly expanded from ligation to cleavage reactions, with broad applications ranging from live cells to animals for biological studies, medical as well as pharmaceutical research. Chinese chemical biologists have actively participated in this exciting area, and a series of important work has been carried out with notable achievements. In particular, the creation and development of bioorthogonal cleavage reactions and its diverse applications have drawn considerable attentions. In this review, we summarize the representative work on bioorthogonal chemistry that been developed in China in recent five years. These works will be categorized into metal-, photo- and small molecule-mediated bioorthogonal ligation as well as cleavage reactions, respectively. In the end, we will discuss the future development along this exciting avenue and the further innovation of the “remote-control bioorthogonal chemistry”, which may eventually drive the bioorthogonal reactions into living animals or even human being.

Cite this article

Xin Wang , Xianrui Zhang , Zongyu Huang , Xinyuan Fan , Peng R. Chen . Recent Progress of Bioorthogonal Chemistry in China[J]. Acta Chimica Sinica, 2021 , 79(4) : 406 -413 . DOI: 10.6023/A20110530

References

[1]
Sletten, E.M.; Bertozzi, C.R. Angew. Chem. Int. Ed. 2009, 48,6974.
[2]
Bertozzi, C.R. Acc. Chem. Res. 2011, 44,651.
[3]
Fan, X.; Li, J.; Chen, P.R. Natl. Sci. Rev. 2017, 4,300.
[4]
Prescher, J.A.; Bertozzi, C.R. Nat. Chem. Biol. 2005, 1,13.
[5]
Li, J.; Wang, J.; Chen, P.R. Acta Chim. Sinica 2012, 70,1439. (in Chinese)
[5]
( 李劼, 王杰, 陈鹏, 化学学报, 2012, 70,1439.)
[6]
Yang, M.Y.; Chen, P.R. Acta Chim. Sinica 2015, 73,783. (in Chinese)
[6]
( 杨麦云, 陈鹏, 化学学报, 2015, 73,783.)
[7]
Wang, Z.; Li, M.; Li, H.; Liu, Z.; Li, Y.; Zheng, J. Chin. J. Org. Chem. 2018, 38,2400. (in Chinese)
[7]
( 王志鹏, 李曼, 李珲, 刘志华, 李影, 郑基深, 有机化学, 2018, 38,2400.)
[8]
Song, C.; Wang, J.; Xu, Z. Acta Chim. Sinica 2015, 73,1114. (in Chinese)
[8]
( 宋传玲, 王建武, 徐政虎, 化学学报, 2015, 73,1114.)
[9]
Saxon, E.; Bertozzi, C.R. Science 2000, 287,2007.
[10]
Li, J.; Yu, J.; Zhao, J.; Wang, J.; Zheng, S.; Lin, S.; Chen, L.; Yang, M.; Jia, S.; Zhang, X.; Chen, P.R. Nat. Chem. 2014, 6,352.
[11]
Versteegen, R.M.; Rossin, R.; ten Hoeve, W.; Janssen, H.M.; Robillard, M.S. Angew. Chem. Int. Ed. 2013, 52,14112.
[12]
Li, J.; Jia, S.; Chen, P.R. Nat. Chem. Biol. 2014, 10,1003.
[13]
Li, J.; Chen, P.R. Nat. Chem. Biol. 2016, 12,129.
[14]
Wang, J.; Chen, P.R. Acta Chim. Sinica 2017, 75,1173. (in Chinese)
[14]
( 王杰, 陈鹏, 化学学报, 2017, 75,1173.)
[15]
Lin, F.; Chen, L.; Zhang, H.; Ngai, W.; Zeng, X.; lin, J.; Chen, P.R. CCS Chem. 2019, 1,226.
[16]
Zhang, X.; Luo, H.; Fan, X.; Chen, P.R. Sci. Sin. Chim. 2020, 50,1280. (in Chinese)
[16]
( 张贤睿, 罗惠鑫, 樊新元, 陈鹏, 中国科学: 化学, 2020, 50,1280.)
[17]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Angew. Chem. Int. Ed. 2001, 40,2004.
[18]
Lu, J.; Yang, H.; Jin, Y.; Jiang, Y.; Fu, H. Green Chem. 2013, 15,3184.
[19]
Yang, M.; Jalloh, A.S.; Wei, W.; Zhao, J.; Wu, P.; Chen, P.R. Nat. Commun. 2014, 5,4981.
[20]
Wang, F.; Zhang, Y.; Liu, Z.; Du, Z.; Zhang, L.; Ren, J.; Qu, X. Angew. Chem. Int. Ed. 2019, 58,6987.
[21]
Xue, X.; Qian, C.; Tao, Q.; Dai, Y.; Lv, M.; Dong, J.; Su, Z.; Qian, Y.; Zhao, J.; Liu, H.; Guo, Z. Natl. Sci. Rev. 2020, https://doi.org/10.1093/nsr/nwaa286
[22]
Song, W.; Zheng, N. Org. Lett. 2017, 19,6200.
[23]
Li, J.; Lin, S.; Wang, J.; Jia, S.; Yang, M.; Hao, Z.; Zhang, X.; Chen, P.R. J. Am. Chem. Soc. 2013, 135,7330.
[24]
Ma, X.; Wang, H.; Chen, W. J. Org. Chem. 2014, 79,8652.
[25]
Wang, F.; Zhang, Y.; Du, Z.; Ren, J.; Qu, X. Nat. Commun. 2018, 9,1209.
[26]
Long, Y.; Cao, B.; Xiong, X.; Chan, A.; Sun, R.; Zou, T.; Angew. Chem. Int. Ed. 2020, 59,2.
[27]
Shi, W.; Tang, F.; Ao, J.; Yu, Q.; Liu, J.; Tang, Y.; Jiang, B.; Ren, X.; Huang, H.; Yang, W.; Huang, W. Angew. Chem. Int. Ed. 2020, 59,19940.
[28]
Yang, J.; Zhang, J.; Qi, L.; Hu, C.; Chen, Y. Chem. Commun. 2015, 51,5275.
[29]
Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem. Soc. 2014, 136,2280.
[30]
Li, J.; Kong, H.; Huang, L.; Cheng, B.; Qin, K.; Zheng, M.; Yan, Z.; Zhang, Y. J. Am. Chem. Soc. 2018, 140,14542.
[31]
Zhang, L.; Zhang, X.; Yao, Z.; Jiang, S.; Deng, J.; Li, B.; Yu, Z. J. Am. Chem. Soc. 2018, 140,7390.
[32]
Zhang, X.; Wu, X.; Jiang, S.; Gao, J.; Yao, Z.; Deng, J.; Zhang, L.; Yu, Z. Chem. Commun. 2019, 55,7187.
[33]
Deng, J.; Wu, X.; Guo, G.; Zhao, X.; Yu, Z. Org. Biomol. Chem. 2020, 18,5602.
[34]
Yao, Z.; Wu, X.; Zhang, X.; Xiong, Q.; Jiang, S.; Yu, Z. Org. Biomol. Chem. 2019, 17,6777.
[35]
Li, Q.; Dong, T.; Liu, X.; Lei, X. J. Am. Chem. Soc. 2013, 135,4996.
[36]
Gubu, A.; Li, L.; Ning, Y.; Zhang, X.; Lee, S.; Feng, M.; Li, Q.; Lei, X.; Jo, K.; Tang, X. Chem. - A Eur. J. 2018, 24,5895.
[37]
Zhang, X.; Zhang, S.; Li, Q.; Xiao, F.; Yue, Z.; Hong, X.; Lei, X. Org. Lett. 2020, 22,2920.
[38]
Wang, P.; Zhang, S.; Meng, Q.; Liu, Y.; Shang, L.; Yin, Z. Org. Lett. 2015, 17,1361.
[39]
Zhang, J.; Gao, Y.; Kang, X.; Zhu, Z.; Wang, Z.; Xi, Z.; Yi, L. Org. Biomol. Chem. 2017, 15,4212.
[40]
Xie, Y.; Cheng, L.; Gao, Y.; Cai, X.; Yang, X.; Yi, L.; Xi, Z. Chem. - An Asian J. 2018, 13,1791.
[41]
Li, Y.; Lou, Z.; Li, H.; Yang, H.; Zhao, Y.; Fu, H. Angew. Chem. Int. Ed. 2020, 59,3671.
[42]
Wang, J.; Zheng, S.; Liu, Y.; Zhang, Z.; Lin, Z.; Li, J.; Zhang, G.; Wang, X.; Li, J.; Chen, P.R. J. Am. Chem. Soc. 2016, 138,15118.
[43]
Wang, X.; Liu, Y.; Fan, X.; Wang, J.; Ngai, W.S. C.; Zhang, H.; Li, J.; Zhang, G.; Lin, J.; Chen, P.R. J. Am. Chem. Soc. 2019, 141,17133.
[44]
Zhao, J.; Lin, S.; Huang, Y.; Zhao, J.; Chen, P.R. J. Am. Chem. Soc. 2013, 135,7410.
[45]
Wang, H.; Li, W.G.; Zeng, K.; Wu, Y.J.; Zhang, Y.; Xu, T.L.; Chen, Y. Angew. Chem. Int. Ed. 2019, 58,561.
[46]
Fu, Q.; Li, H.; Wang, C.; Shen, S.; Ma, H.; Liu, Z. Angew. Chem. Int. Ed. 2020, 59,21546.
[47]
Zhang, G.; Li, J.; Xie, R.; Fan, X.; Liu, Y.; Zheng, S.; Ge, Y.; Chen, P.R. ACS Cent. Sci. 2016, 2,325.
[48]
Fan, X.; Ge, Y.; Lin, F.; Yang, Y.; Zhang, G.; Ngai, W.S. C.; Lin, Z.; Zheng, S.; Wang, J.; Zhao, J.; Chen, P.R. Angew. Chem. Int. Ed. 2016, 55,14046.
[49]
Ge, Y.; Fan, X.; Chen, P.R. Chem. Sci. 2016, 7,7055.
[50]
Wang, Q.; Wang, Y.; Ding, J.; Wang, C.; Zhou, X.; Gao, W.; Huang, H.; Shao, F.; Liu, Z. Nature 2020, 579,421.
[51]
Wallace, S.; Chin, J.W. Chem. Sci. 2014, 5,1742.
[52]
Shao, Z.; Liu, W.; Tao, H.; Liu, F.; Zeng, R.; Champagne, P.A.; Cao, Y.; Houk, K.N.; Liang, Y. Chem. Commun. 2018, 54,14089.
[53]
Li, B.; Liu, P.; Wu, H.; Xie, X.; Chen, Z.; Zeng, F.; Wu, S. Biomaterials 2017, 138,57.
Outlines

/