Review

Research Progress on Triphase Interface Electrocatalytic Carbon Dioxide Reduction

  • Yining Ma ,
  • Run Shi ,
  • Tierui Zhang
Expand
  • a Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2020-11-25

  Online published: 2021-01-14

Supported by

Beijing Natural Science Foundation(2194089); National Natural Science Foundation of China(21902168)

Abstract

Electrocatalytic carbon dioxide reduction is the focus and nodus of energy chemistry and catalytic science. As a basic concept in physical chemistry, gas-solid-liquid triphase interface model has been widely studied in electrocatalytic carbon dioxide reduction reaction in recent years, showing many advantages compared with traditional solid-liquid biphase systems. In this review, we discuss the research progress of triphase interface eletrocatalytic carbon dioxide reduction, focused on the classification as well as the principle of triphase interface eletrocatalytic systems. Then, carbon dioxide electroreduction properties of various triphase systems including underwater superaerophilic and gas diffusion layer systems are discussed, with special attention on the influence factors, such as the interfacial diffusion and interfacial wettability of reactants. Finally, we summarize and prospect the existing problems and the future development direction of electrocatalytic carbon dioxide reduction based on triphase systems.

Cite this article

Yining Ma , Run Shi , Tierui Zhang . Research Progress on Triphase Interface Electrocatalytic Carbon Dioxide Reduction[J]. Acta Chimica Sinica, 2021 , 79(4) : 369 -377 . DOI: 10.6023/A20110540

References

[1]
Chu, S.; Majumdar, A. Nature 2012, 488,294.
[2]
Windle, C.D.; Perutz, R.N. Coordin. Chem. Rev. 2012, 256,2562.
[3]
Liu, C.; Colon, B.C.; Ziesack, M.; Silver, P.A.; Nocera, D.G. Science 2016, 352,1210.
[4]
Li, Z.J.; Li, G.; Chen, X.L.; Xia, Z.; Yang, B.; Yao, J.N.; Lei, L.C.; Hou, Y. ChemSusChem 2018, 11,2382.
[5]
Choi, K.M.; Kim, D.; Rungtaweevoranit, B.; Trickett, C.A.; Barmanbek, J.T. D.; Alshammari, A.S.; Yang, P.D.; Yaghi, O.M. J. Am. Chem. Soc. 2017, 139,356.
[6]
Hori, Y.; Kikuchi, K.; Murata, A.; Suzuki, S. Chem. Lett. 1986, 6,897.
[7]
Hori, Y.; Murata, A.; Takahashi, R. J. Chem. Soc. Faraday Trans. 1989, 85,2309.
[8]
Saveant, J.M. ChemElectroChem 2016, 3,1967.
[9]
Dufek, E.J.; Lister, T.E.; Stone, S.G.; Mcllwain, M.E. J. Electrochem. Soc. 2012, 159,F514.
[10]
Carroll, J.J.; Slupsky, J.D.; Mather, A.E. J. Phys. Chem. Ref. Data 1991, 20,1201.
[11]
Tackett, B.M.; Gomez, E.; Chen, J.G. Nat. Catal. 2019, 2,381.
[12]
Chi, C.; Juliet, F.K. K.; Stafford, W.S. Chem 2018, 4,2571.
[13]
Zhang, Y.; Guo, S.X.; Zhang, X.L.; Bond, A.M.; Zhang, J. Nano Today 2020, 31,100835.
[14]
Hori, Y.; Wakebe, H.; Tsukamoto, T.; Koga, O. Electrochim. Acta 1994, 39,1833.
[15]
Schreier, M.; Yoon, Y.; Jackson, M.N.; Surendranath, Y. Angew. Chem. Int. Ed. 2018, 57,10221.
[16]
Hori, Y.; Kikuchi, K.; Suzuki, S. Chem. Lett. 1985, 11,1695.
[17]
Cheng, T.; Xiao, H.; Goddard, W.A. J. Am. Chem. Soc. 2016, 138,133802.
[18]
Jones, J.; Prakash, G.K. S.; Olah, G.A. Isr. J. Chem. 2014, 54,1451.
[19]
Gao, S.; Lin, Y.; Jiao, X.C.; Sun, Y.F.; Luo, Q.Q.; Zhang, W.H.; Li, D.Q.; Yang, J.L.; Xie, Y. Nature 2016, 529,68.
[20]
Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K. Angew. Chem. Int. Ed. 2013, 52,7372.
[21]
Ting, L.R. L.; Yeo, B.S. Curr. Opin. Electrochem. 2018, 8,126.
[22]
Albo, J.; Sáez, A.; Solla-Gullón, J.; Montiel, V.; Irabien, A. Appl. Catal. B-Environ. 2015, 176,709.
[23]
Li, J.; Chen, G.X.; Zhu, Y.Y.; Liang, Z.; Pei, A.; Wu, C.L.; Wang, H.X.; Lee, H.R.; Liu, K.; Chu, S.; Cui, Y. Nat. Catal. 2018, 1,592.
[24]
Xu, W.W.; Lu, Z.Y.; Sun, X.M.; Jiang, L.; Duan, X. Acc. Chem. Res. 2018, 51,1590.
[25]
Lu, Z.Y.; Zhu, W.; Yu, X.Y.; Zhang, H.C.; Li, Y.J.; Sun, X.M.; Wang, X.W.; Wang, H.; Wang, J.M.; Luo, J.; Lei, X.D.; Jiang, L. Adv. Mater. 2014, 26,2683.
[26]
Wen, L.P.; Tian, Y.; Jiang, L. Angew. Chem. Int. Ed. 2015, 54,3387.
[27]
Wang, J.M.; Zheng, Y.M.; Nie, F.Q.; Zhai, J.; Jiang, L. Langmuir 2009, 25,14129.
[28]
Cai, Z,; Zhang, Y.S.; Zhao, Y.X.; Wu, Y.S.; Xu, W.W.; Wen, X.M.; Zhong, Y.; Zhang, Y.; Liu, W.; Wang, H.L.; Kuang, Y.; Sun, X.M. Nano Res. 2019, 12,345.
[29]
Schouten, K.J. P.; Kwon, Y.; Van der Ham, C.J. M.; Qin, Z.; Koper, M.T. M. Chem. Sci. 2011, 2,1902.
[30]
Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Nat. Mater. 2019, 18,1222.
[31]
Dinh, C.T.; Burdyny, T.; Kibria, M.G.; Selfitokaldani, A.; Gabardo, C.M.; de Arquer, F.P. G.; Kiani, A.; Edwards, J.P.; De Luna, P.; Bushuyev, O.S.; Zou, C.Q.; Quintero-Bermudez, R.; Pang, Y.J.; Sinton, D.; Sargent, E.H. Science 2018, 360,783.
[32]
Zheng, T.T.; Jiang, K.; Ta, N.; Hu, Y.F.; Zeng, J.; Liu, J.Y.; Wang, H.T. Joule 2019, 3,265.
[33]
de Arquer, F.P. G.; Dinh, C.T.; Ozden, A.; Wicks, J.; McCallum, C.; Kirmani, A.R.; Nam, D.H.; Gabardo, C.; Seifitokaldani, A.; Wang, X.; Li, Y.C.; Li, F.W.; Edwards, J.; Richter, L.J.; Thorpe, S.J.; Sinton, D.; Sargent, E.H. Science 2020, 367,661.
[34]
Kaczur, J.J.; Yang, H.Z.; Liu, Z.C.; Sajjad, S.A.; Masel, R.I. Front. Chem. 2018, 6,263.
[35]
Yin, Z.L.; Peng, H.Q.; Wei, X.; Zhou, H.; Gong, J.; Huai, M.M.; Xiao, L.; Wang, G.W.; Lu, J.T.; Zhuang, L. Energy Environ. Sci. 2019, 12,2455.
[36]
Xiong, X.Y.; Wang, Z.P.; Zhang, Y.; Li, Z.H.; Shi, R.; Zhang, T.R. Appl. Catal. B-Environ. 2020, 264,118518.
[37]
Burdyny, T.; Graham, P.J.; Pang, Y.J.; Dinh, C.T.; Min, L.; Sargent, E.H.; Sinton, D. ACS Sustain. Chem. Eng. 2017, 5,4031.
[38]
Shi, R.; Guo, J.H.; Zhang, Y.R.; Waterhouse, G.I. N.; Han, Z.J.; Zhao, Y.X.; Shang, L.; Zhou, C.; Jiang, L.; Zhang, T.R. Nat. Commun. 2020, 11,3028.
[39]
Nesbitt, N.T.; Burdyny, T.; Simonson, H.; Salvatore, D.; Bohra, D.; Kas, R.; Smith, W.A. ACS Catal. 2020, 10,14093.
[40]
Liu, Z.; Sheng, X.; Wang, D.D.; Feng, X.J. iScience 2019, 17,67.
[41]
Giorgi, L.; Antilini, E.; Pozio, A.; Passalacqua, E. Electrochim. Acta 1998, 43,3675.
[42]
Martínez-Rodríguez, M.J.; Cui, T.; Shipalee, S.; Seraphin, S.; Duong, B.; Van Zee, J.W. J. Power Sources 2012, 207,91.
[43]
Jhong, H.-R. M.; Brushett, F.R.; Yin, L.L.; Stevenson, D.M.; Kenis, P.J. A. J. Electrochem. Soc. 2012, 159,B292.
[44]
Kim, B.; Hillman, F.; Arioshi, M.; Fujikawa, S.; Kenis, P.J. A. J. Power Sources 2016, 312,192.
[45]
Jhong, H.-R. M.; Brushett, F.R.; Kenis, P.J. A. Adv. Energy Mater. 2013, 3,589.
[46]
Gabado, C.M.; Seifitokaldani, A.; Edwards, J.P.; Dinh, C.-T.; Burdyny, T.; Kibria, M.G.; O’Brien, C.P.; Sargent, E.H.; Sinton, D. Energy Environ. Sci. 2018, 11,2531.
[47]
Thorson, M.R.; Siil, K.I.; Kenis, P.J. A. J. Electrochem. Soc. 2013, 160,F69.
[48]
Kim, B.; Ma, S.; Jhong, H.-R. M.; Kenis, P.J. A. Electrochim. Acta 2015, 166,271.
[49]
Verma, S.; Lu, X.; Ma, S.; Masel, R.I.; Kenis, P.J. A. Phys. Chem. Chem. Phys. 2016, 18,7075.
[50]
Chen, K.H.; Li, H.R.; He, L.N. Chin. J. Org. Chem. 2020, 40,2195. (in Chinese)
[50]
( 陈凯宏, 李红茹, 何良年, 有机化学, 2020, 40,2195.)
[51]
Jhong, H.-R. M.; Tornow, C.E.; Kim, C.; Verma, S.; Oberst, J.L.; Anderson, P.S.; Gewirth, A.A.; Fujigaya, T.; Nakashima, N.; Kenis, P.J. A. ChemPhysChem 2017, 18,3274.
[52]
Wang, Y.J.; Wilkinson, D.P.; Zhang, J.J. Chem. Rev. 2011, 111,7625.
[53]
Liu, M.M.; Zhang, R.Z.; Chen, W. Chem. Rev. 2014, 114,5117.
[54]
Wang, Z.L.; Xu, D.; Xu, J.J.; Zhang, X.B. Chem. Soc. Rev. 2014, 43,7746.
[55]
Li, Y.G.; Gong, M.; Liang, Y.Y.; Feng, J.; Kim, J.E.; Wang, H.L.; Hong, G.S.; Zhang, B.; Dai, H.J. Nat. Commun. 2013, 4,1805.
[56]
Lu, Z.Y.; Xu, W.W.; Ma, J.; Li, Y.J.; Sun, X.M.; Jiang, L. Adv. Mater. 2016, 28,7155.
[57]
Lei, Y.J.; Sun, R.Z.; Zhang, X.C.; Feng, X.J.; Jiang, L. Adv. Mater. 2016, 28,1477.
[58]
Wang, Y.L.; Shi, R.; Shang, L.; Waterhouse, G.I. N.; Zhao, J.Q.; Zhang, Q.H.; Gu, L.; Zhang, T.R. Angew. Chem. Int. Ed. 2020, 59,13057.
[59]
Chen, S.L.; Patil, S.A.; Schroeder, U. Appl. Mater. 2018, 211,1089.
[60]
Li, J.; Chang, K.; Zhang, H.C.; He, M.; Goddard, W.A.; Chen, J.G. G.; Cheng, M.J.; Lu, Q. ACS Catal. 2019, 9,4709.
[61]
Chen, R.X.; Su, H.Y.; Liu, D.Y.; Huang, R.; Meng, X.G.; Cui, X.J.; Tian, Z.Q.; Zhang, D.H.; Deng, D.H. Angew. Chem. Int. Ed. 2019, 59,154.
[62]
Jouny, M.; Luc, W.; Jiao, F. Nat. Catal. 2018, 1,1002.
[63]
Li, Y.J.; Zhang, H.C.; Xu, T.H.; Lu, Z.Y.; Wu, X.C.; Wan, P.B.; Sun, X.M.; Jiang, L. Adv. Funct. Mater. 2015, 25,1737.
[64]
Hao, M.; Chanbonneau, V.; Fomena, N.N.; Gaudet, J.; Bruce, D.R.; Garbarino, S.; Harrington, D.A.; Gauy, D. ACS Appl. Energy Mater. 2019, 2,5734.
[65]
Yuan, J.X.; Cheng, X.D.; Wang, H.Q.; Lei, C.J.; Pardiwala, S.; Yang, B.; Li, Z.J.; Zhang, Q.H.; Lei, L.C.; Wang, S.B.; Hou, Y. Nano-Micro Lett. 2020, 12,104.
Outlines

/